Skip to main content
Log in

Charge distribution in the ternary fragmentation of 252Cf

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

We present here, for the first time, a study on ternary fragmentation charge distribution of 252Cf using the convolution integral method and the statistical theory. The charge distribution for all possible charge combinations of a ternary breakup are grouped as a bin containing different mass partitions. Different bins corresponding to various third fragments with mass numbers from \( A_3 = 16\) to 84 are identified with the available experimental masses. The corresponding potential energy surfaces are calculated using the three cluster model for the two arrangements \( A_1 + A_2 + A_3\) and \( A_1 + A_3 + A_2\) . The ternary fragmentation yield values are calculated for the ternary combination from each bin possessing minimum potential energy. The yields of the resulting ternary combinations as a function of the charge numbers of the three fragments are analyzed for both the arrangements. The calculations are carried out at different excitation energies of the parent nucleus. For each excitation energy the temperature of the three fragments are iteratively computed conserving the total energy. The distribution of fragment temperatures corresponding to different excitation energies for some fixed third fragments are discussed. The presence of the closed shell nucleus Sn in the favourable ternary fragmentation is highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Fong, Phys. Rev. 102, 434 (1956)

    Article  ADS  Google Scholar 

  2. R.W. Hasse, Nucl. Phys. A 128, 609 (1969)

    Article  ADS  Google Scholar 

  3. J. Maruhn, W. Greiner, Phys. Rev. Lett. 32, 548 (1974)

    Article  ADS  Google Scholar 

  4. M. Rajasekaran, V. Devanathan, Phys. Rev. C 24, 2606 (1981)

    Article  ADS  Google Scholar 

  5. P. Fong, Phys. Rev. C 3, 2025 (1971)

    Article  ADS  Google Scholar 

  6. H. Diehl, W. Greiner, Nucl. Phys. A 229, 29 (1974)

    Article  ADS  Google Scholar 

  7. A.R. Degheidy, J.A. Maruhn, Z. Phys. A 290, 205 (1979)

    Article  ADS  Google Scholar 

  8. V.A. Rubchenya, S.G. Yavshits, Z. Phys. A At. Nucl. 329, 217 (1988)

    Article  ADS  Google Scholar 

  9. M. Mutterer, J.P. Theobald, in Nuclear Decay Modes, edited by D.N. Poenaru (Institute of Physics Publishing, Bristol, 1996) Chapt. 12, p. 487

  10. A. Sandulescu et al., J. Phys. G: Nucl. Part. Phys. 24, 181 (1998)

    Article  ADS  Google Scholar 

  11. A. Sandulescu, F. Carstoiu, I. Bulboaca, W. Greiner, Phys. Rev. C 60, 044613 (1999)

    Article  ADS  Google Scholar 

  12. D.N. Poenaru, W. Greiner, R.A. Gherghescu, At. Data Nucl. Data Tables 68, 91 (1998)

    Article  ADS  Google Scholar 

  13. D.N. Poenaru et al., J. Phys. G: Nucl. Part. Phys. 26, L97 (2000)

    Article  Google Scholar 

  14. D.N. Poenaru, R.A. Gherghescu, W. Greiner, Y. Nagame, J.H. Hamilton, A.V. Ramayya, Rom. Rep. Phys. 55, 549 (2003)

    Google Scholar 

  15. D.N. Poenaru, R.A. Gherghescu, W. Greiner, Nucl. Phys. A 747, 182 (2005)

    Article  ADS  Google Scholar 

  16. R.A. Gherghescu, D.N. Poenaru, W. Greiner, Int. J. Mod. Phys. E 17, 2221 (2008)

    Article  ADS  Google Scholar 

  17. I. Halpern, in Proceedings of the IAEA Symposium on the Physics and Chemistry of Fission, Salzburg 1965, Vol. 2 (International Atomic Energy Agency, Vienna, 1965) p. 369

  18. A.V. Ramayya et al., Phys. Rev. Lett. 81, 947 (1998)

    Article  ADS  Google Scholar 

  19. A.V. Ramayya et al., Phys. Rev. C 57, 2370 (1998)

    Article  ADS  Google Scholar 

  20. U. Köster et al., Nucl. Phys. A 652, 371 (1999)

    Article  ADS  Google Scholar 

  21. I. Tsekhanovich, Z. Buyukmumcu, M. Davi, H.O. Denschlag, F. Gnnenwein, S.F. Boulyga, Phys. Rev. C 67, 034610 (2003)

    Article  ADS  Google Scholar 

  22. F. Gonnenwein, Nucl. Phys. A 734, 213 (2004)

    Article  ADS  Google Scholar 

  23. J.P. Lestone, Phys. Rev. C 70, 021601(R) (2004)

    Article  ADS  Google Scholar 

  24. Yu.V. Pyatkov et al., Eur. Phys. J. A 45, 29 (2010)

    Article  ADS  Google Scholar 

  25. Yu.V. Pyatkov et al., Eur. Phys. J. A 48, 94 (2012)

    Article  ADS  Google Scholar 

  26. W. von Oertzen, A.K. Nasirov, Phys. Lett. B 734, 234 (2014)

    Article  ADS  Google Scholar 

  27. A.V. Karpov, Phys. Rev. C 94, 064615 (2016)

    Article  ADS  Google Scholar 

  28. V.Yu. Denisov, N.A. Pilipenko, I.Yu. Sedykh, Phys. Rev. C 95, 014605 (2017)

    Article  ADS  Google Scholar 

  29. K. Manimaran, M. Balasubramaniam, Phys. Rev. C 79, 024610 (2009)

    Article  ADS  Google Scholar 

  30. K. Manimaran, M. Balasubramaniam, J. Phys. G: Nucl. Part. Phys. 37, 045104 (2010)

    Article  ADS  Google Scholar 

  31. K. Manimaran, M. Balasubramaniam, Eur. Phys. J. A 45, 293 (2010)

    Article  ADS  Google Scholar 

  32. K. Manimaran, M. Balasubramaniam, Phys. Rev. C 83, 034609 (2011)

    Article  ADS  Google Scholar 

  33. R.K. Gupta, Sov. J. Part. Nucl. 8, 289 (1977)

    Google Scholar 

  34. J.A. Maruhn, W. Greiner, W. Scheid, Heavy Ion Collisions, Vol. 2, edited by R. Bock (North Holland, Amsterdam, 1980) Chapt. 6

  35. A. Sandulescu, D.N. Poenaru, W. Greiner, Sov. J. Part. Nucl. 11, 528 (1980)

    Google Scholar 

  36. R.K. Gupta, in Heavy Elements and Related New Phenomena, Vol. II, edited by W. Greiner, R.K. Gupta (World Scientific, Singapore, 1999) p. 730

  37. R.K. Gupta, W. Greiner, in Heavy Elements and Related New Phenomena, Vol. I, edited by W. Greiner, R.K. Gupta (World Scientific, Singapore, 1999) p. 536

  38. M. Balasubramaniam, C. Karthikraj, N. Arunachalam, S. Selvaraj, Phys. Rev. C 90, 054611 (2014)

    Article  ADS  Google Scholar 

  39. K.R. Vijayaraghavan, M. Balasubramaniam, W. von Oertzen, Phys. Rev. C 91, 044616 (2015)

    Article  ADS  Google Scholar 

  40. M. Balasubramaniam, K.R. Vijayaraghavan, K. Manimaran, Phys. Rev. C 93, 014601 (2016)

    Article  ADS  Google Scholar 

  41. K.R. Vijayaraghavan, M. Balasubramaniam, W. von Oertzen, Phys. Rev. C 90, 024601 (2014)

    Article  ADS  Google Scholar 

  42. A.J. Cole, in Fundamental and Applied Nuclear Physics Series - Statistical Models for Nuclear Decay from Evaporation to Vaporization, edited by R.R. Betts, W. Greiner (Institute of Physics Publishing, Bristol and Philadelphia, 2000)

  43. J.R. Huizenga, L.G. Moretto, Annu. Rev. Nucl. Sci. 22, 427 (1972)

    Article  ADS  Google Scholar 

  44. https://www-nds.iaea.org/RIPL-3/

  45. G. Audi et al., Chin. Phys. C 36, 1287 (2012)

    Article  Google Scholar 

  46. M.T. Senthilkannan, B. Kumar, M. Balasubramaniam et al., Phys. Rev. C 95, 064613 (2017)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Balasubramaniam.

Additional information

Communicated by F. Gulminelli

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Senthil Kannan, M.T., Balasubramaniam, M. Charge distribution in the ternary fragmentation of 252Cf . Eur. Phys. J. A 53, 164 (2017). https://doi.org/10.1140/epja/i2017-12355-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2017-12355-9

Navigation