Skip to main content
Log in

The ρ(1S, 2S), ψ(1S, 2S), Υ(1S, 2S) and ψ t (1S, 2S) Mesons in a Double Pole QCD Sum Rule

  • Nuclear Physics
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

We use the method of double pole QCD sum rule, which is basically a fit with two exponentials of the correlation function, where we can extract the masses and decay constants of mesons as a function of the Borel mass. We apply this method to study the mesons: ρ(1S,2S), ψ(1S,2S), Υ(1S,2S), and ψ t (1S,2S). We also present predictions for the toponiuns masses ψ t (1S,2S) of m(1S)=357 GeV and m(2S)=374 GeV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. V.A. Novikov, L.B. Okun, M.A. Shifman, A.I. Vainshtein, M.B. Voloshin, V.I. Zakharov, Phys. Rept. 41, 1 (1978)

    Article  ADS  Google Scholar 

  2. V.A. Novikov, L.B. Okun, M.A. Shifman, A.I. Vainshtein, M.B. Voloshin, V.I. Zakharov, Phys. Lett. B. 67, 409 (1977)

    Article  ADS  Google Scholar 

  3. M.A. Shifman, A.I. Vainshtein, V.I. Zakharov, Nucl. Phys. B. 147, 385 (1979)

    Article  ADS  Google Scholar 

  4. M.A. Shifman, A.I. Vainshtein, M.B. Voloshin, V.I. Zakharov, Phys. Lett. B. 77, 80 (1978)

    Article  ADS  Google Scholar 

  5. P. Colangelo, A. Khodjamirian. in At the frontier of particle physics, ed. by M. Shifman. arXiv:hep-ph/0010175, Vol. 3, pp. 1495–1576

  6. L.J. Reinders, H. Rubinstein, S. Yazaki, Phys. Rept. 127, 1 (1985)

  7. M.E. Bracco, S.H. Lee, M. Nielsen, R. Rodrigues da Silva, Phys. Lett. B. 671, 240 (2009). arXiv:0807.3275 [hep-ph]

    Article  ADS  Google Scholar 

  8. V.I. Zakharov, B.L. Ioffe, L.B. Okun, Sov. Phys. Usp. 18, 757 (1975). Usp. Fiz. Nauk 117, 227 (1975)

    Article  ADS  Google Scholar 

  9. J. Segovia, D.R. Entem, F. Fernandez, arXiv:1409.7079 [hep-ph]

  10. O. Lakhina, E.S. Swanson, Phys. Rev. D. 74, 014012 (2006). arXiv:hep-ph/0603164

    Article  ADS  Google Scholar 

  11. D.B. Leinweber, Phys. Rev. D. 51, 6369 (1995). arXiv:nucl-th/9405002

    Article  ADS  Google Scholar 

  12. Particle Data Group: J. Beringer, et al., Phys. Rev. D. 86, 010001 (2012)

    Article  Google Scholar 

  13. J.P. Singh, F.X. Lee, Phys. Rev. C. 76, 065210 (2007). arXiv:nucl-th/0612059

    Article  ADS  Google Scholar 

  14. P. Gubler, M. Oka, Prog. Theor. Phys. 124, 995 (2010). arXiv:1005.2459 [hep-ph]

    Article  ADS  Google Scholar 

  15. D. Harnett, R.T. Kleiv, K. Moats, T.G. Steele, Nucl. Phys. A. 850, 110 (2011). arXiv:0804.2195 [hep-ph]

    Article  ADS  Google Scholar 

  16. A.P. Bakulev, S.V. Mikhailov, Phys. Lett. B. 436, 351 (1998). arXiv:hep-ph/9803298

    Article  ADS  Google Scholar 

  17. A.V. Pimikov, S.V. Mikhailov, N.G. Stefanis, arXiv:1312.2776 [hep-ph]

  18. K. Ohtani, P. Gubler, M. Oka, AIP Conf. Proc. 1343, 343 (2011). arXiv:1104.5577 [hep-ph]

    ADS  Google Scholar 

  19. P. Gubler, K. Morita, M. Oka, Phys. Rev. Lett. 107, 092003 (2011). arXiv:1104.4436 [hep-ph]

    Article  ADS  Google Scholar 

  20. K. Suzuki, P. Gubler, K. Morita, M. Oka, arXiv:1204.1173 [hep-ph]

  21. UKQCD Collaboration: C. McNeile, et al., Phys. Lett. B. 642, 244 (2006). arXiv:hep-lat/0607032

    Article  ADS  Google Scholar 

  22. Bern-Graz-Regensburg Collaboration: T. Burch, et al., Phys. Rev. D. 70, 054502 (2004). arXiv:hep-lat/0405006

    ADS  Google Scholar 

  23. CP-PACS Collaboration: T. Yamazaki, et al., Phys. Rev. D. 65, 014501 (2002). arXiv:hep-lat/0105030

    Article  Google Scholar 

  24. J.J. Dudek, R.G. Edwards, D.G. Richards, Phys. Rev. D. 73, 074507 (2006). arXiv:hep-ph/0601137

    Article  ADS  Google Scholar 

  25. J.J. Dudek, R.G. Edwards, N. Mathur, D.G. Richards, Phys. Rev. D. 77, 034501 (2008). arXiv:0707.4162 [hep-lat]

    Article  ADS  Google Scholar 

  26. L. Liu, S.M. Ryan, M. Peardon, G. Moir, P. Vilaseca, arXiv:1112.1358 [hep-lat]

  27. N. Mathur, Y. Chen, S.J. Dong, T. Draper, I. Horvath, F.X. Lee, K.F. Liu, J.B. Zhang, Phys. Lett. B. 605, 137 (2005). arXiv:hep-ph/0306199 hep-ph/0306199

    Article  ADS  Google Scholar 

  28. R.G. Edwards, J.J. Dudek, D.G. Richards, S.J. Wallace, Phys. Rev. D. 84, 074508 (2011). arXiv:1104.5152 [hep-ph]

    Article  ADS  Google Scholar 

  29. D. Guadagnoli, M. Papinutto, S. Simula, Phys. Lett. B. 604, 74 (2004). arXiv:hep-lat/0409011

    Article  ADS  Google Scholar 

  30. L. Liu, G. Moir, M. Peardon, S.M. Ryan, C.E. Thomas, P. Vilaseca, J.J. Dudek, R.G. Edwards, et al., arXiv:1204.5425 [hep-ph]

  31. S.-x. Qin, L. Chang, Y.-x. Liu, C.D. Roberts, D.J. Wilson, Phys. Rev. C. 85, 035202 (2012). arXiv:1109.3459 [nucl-th]

    Article  ADS  Google Scholar 

  32. T. Peng, B.-Q. Ma, arXiv:1204.0863 [hep-ph]

  33. D. Arndt, C.-R. Ji, Phys. Rev. D. 60, 094020 (1999). arXiv:hep-ph/9905360 hep-ph/9905360

    Article  ADS  Google Scholar 

  34. L.S. Kisslinger, Phys. Rev. D. 79, 114026 (2009). arXiv:0903.1120 [hep-ph]

    Article  ADS  Google Scholar 

  35. A. Martinez Torres, K.P. Khemchandani, D. Gamermann, E. Oset, Phys. Rev. D. 80, 094012 (2009). arXiv:0906.5333 [nucl-th]

    Article  ADS  Google Scholar 

  36. Z.G. Wang, X.H. Zhang, Commun. Theor. Phys. 54, 323 (2010). arXiv:0905.3784 [hep-ph]

    Article  ADS  Google Scholar 

  37. R.M. Albuquerque, M. Nielsen, R.R. da Silva, Phys. Rev. D. 84, 116004 (2011). arXiv:1110.2113 [hep-ph]

    Article  ADS  Google Scholar 

  38. F.-K. Guo, C. Hanhart, U.-G. Meissner, Phys. Lett. B. 665, 26 (2008). arXiv:0803.1392 [hep-ph]

    Article  ADS  Google Scholar 

  39. F.S. Navarra, M. Nielsen, J.-M. Richard, J. Phys. Conf. Ser. 348, 012007 (2012). arXiv:1108.1230 [hep-ph]

    Article  ADS  Google Scholar 

  40. S. Godfrey, N. Isgur, Phys. Rev. D. 32, 189 (1985)

    Article  ADS  Google Scholar 

  41. D. Ebert, R.N. Faustov, V.O. Galkin, Phys. Rev. D. 79, 114029 (2009). arXiv:0903.5183 [hep-ph]

    Article  ADS  Google Scholar 

  42. D. Becirevic, V. Lubicz, F. Mescia, C. Tarantino, JHEP. 0305, 007 (2003). arXiv:hep-lat/0301020

    Article  ADS  Google Scholar 

  43. N. Fabiano, A. Grau, G. Pancheri, Phys. Rev. D. 50, 3173 (1994)

    Article  ADS  Google Scholar 

  44. Y. Kiyo, Y. Sumino, Phys. Rev. D. 67, 071501 (2003). arXiv:hep-ph/0211299 hep-ph/0211299

    Article  ADS  Google Scholar 

  45. Y.P. Goncharov, Nucl. Phys. A. 808, 73 (2008). arXiv:0806.4747 [hep-ph]

    Article  ADS  Google Scholar 

  46. CMS Collaboration: P. Kokkas, PoS EPS. -HEP2013, 436 (2013)

    Google Scholar 

  47. DELPHI Collaboration: J. Abdallah, et al., Eur. Phys. J. C. 37, 1 (2004). arXiv:hep-ex/0406011

    Article  ADS  Google Scholar 

  48. ETM Collaboration: K. Jansen, et al., Phys. Rev. D. 80, 054510 (2009). arXiv:0906.4720 [hep-lat]

    Article  Google Scholar 

  49. D. Becirevic, G. Duplancic, B. Klajn, B. Melic, F. Sanfilippo, Nucl. Phys. B. 883, 306 (2014). arXiv:1312.2858 [hep-ph]

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgments

We would like to thank Prof. Francisco de Assis de Brito for fruitful discussions. This work has been partially supported by CAPES.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Rodrigues da Silva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maior de Sousa, M.S., da Silva, R.R. The ρ(1S, 2S), ψ(1S, 2S), Υ(1S, 2S) and ψ t (1S, 2S) Mesons in a Double Pole QCD Sum Rule. Braz J Phys 46, 730–739 (2016). https://doi.org/10.1007/s13538-016-0449-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13538-016-0449-9

Keywords

Navigation