Skip to main content
Log in

The MAGNEX spectrometer: Results and perspectives

  • Review
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

This review discusses the main achievements and future perspectives of the MAGNEX spectrometer at the INFN-LNS laboratory in Catania (Italy). MAGNEX is a large-acceptance magnetic spectrometer for the detection of the ions emitted in nuclear collisions below Fermi energy. In the first part of the paper an overview of the MAGNEX features is presented. The successful application to the precise reconstruction of the momentum vector, to the identification of the ion masses and to the determination of the transport efficiency is demonstrated by in-beam tests. In the second part, an overview of the most relevant scientific achievements is given. Results from nuclear elastic and inelastic scattering as well as from transfer and charge-exchange reactions in a wide range of masses of the colliding systems and incident energies are shown. The role of MAGNEX in solving old and new puzzles in nuclear structure and direct reaction mechanisms is emphasized. One example is the recently observed signature of the long searched Giant Pairing Vibration. Finally, the new challenging opportunities to use MAGNEX for future experiments are briefly reported. In particular, the use of double charge-exchange reactions toward the determination of the nuclear matrix elements entering in the expression of the half-life of neutrinoless double beta decay is discussed. The new NUMEN project of INFN, aiming at these investigations, is introduced. The challenges connected to the major technical upgrade required by the project in order to investigate rare processes under high fluxes of detected heavy ions are outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Cappuzzello, MAGNEX: an innovative large acceptance spectrometer for nuclear reaction studies, in Magnets: Types, Uses and Safety (Nova Publisher Inc., New York, 2011) pp. 1--63

  2. M. Berz, Modern Map Methods in Particle Beam Physics (Academic Press, San Diego, 1999) ISBN 0-12-014750-5

  3. M. Berz, Forward algorithms for high orders and many variables, in Automatic Differentiation of Algoritms: Theory, Implementation and Application (SIAM, 1991)

  4. M. Berz, Automatic differentaition as non-archimedean analysis, in Computer Arithmetic and Enclosure Methods, (Elsevier Science Publishers, Amsterdam, 1992) p. 439

  5. M. Berz, Nucl. Instrum. Methods A 298, 426 (1990)

    Article  ADS  Google Scholar 

  6. A. Cunsolo et al., Nucl. Instrum. Methods A 481, 48 (2002)

    Article  ADS  Google Scholar 

  7. A. Cunsolo et al., Nucl. Instrum. Methods A 484, 56 (2002)

    Article  ADS  Google Scholar 

  8. M. Cavallaro et al., AIP Conf. Proc. 1213, 198 (2010)

    Article  ADS  Google Scholar 

  9. F. Cappuzzello, D. Carbone, M. Cavallaro, Nucl. Instrum. Methods A 638, 74 (2011)

    Article  ADS  Google Scholar 

  10. K. Makino, M. Berz, Nucl. Instrum. Methods A 558, 346 (2006)

    Article  ADS  Google Scholar 

  11. F. Cappuzzello et al., Nucl. Instrum. Methods A 621, 419 (2010)

    Article  ADS  Google Scholar 

  12. M. Cavallaro et al., Nucl. Instrum. Methods A 637, 77 (2011)

    Article  ADS  Google Scholar 

  13. H.A. Enge, Nucl. Instrum. Methods 162, 161 (1979)

    Article  ADS  Google Scholar 

  14. W.W. Buechner et al., Phys. Rev. 74, 1569 (1948)

    Article  ADS  Google Scholar 

  15. W.W. Buechner et al., Phys. Rev. 74, 1226 (1948)

    Google Scholar 

  16. J.D. Cockroft, J. Sci. Instrum. 71, (1933)

  17. C.W. Snyder et al., Phys. Rev. 74, 1564 (1948)

    Google Scholar 

  18. C.P. Browne, W.W. Buechner, Rev. Sci. Instrum. 27, 899 (1956)

    Article  ADS  Google Scholar 

  19. W.W. Buechner et al., Phys. Rev. 95, 609 (1954)

    Google Scholar 

  20. J. Borggren et al., Nucl. Instrum. Methods 24, 1 (1963)

    Article  ADS  Google Scholar 

  21. J.E. Spencer, H.A. Enge, Nucl. Instrum. Methods 49, 181 (1967)

    Article  ADS  Google Scholar 

  22. H.A. Enge, Nucl. Instrum. Methods 28, 19 (1964)

    Article  Google Scholar 

  23. R.M. DeVries et al., Nucl. Instrum. Methods 140, 479 (1977)

    Article  ADS  Google Scholar 

  24. D.L. Hendrie et al., Bull. Am. Phys. Soc. 15, 650 (1970)

    Google Scholar 

  25. K.L. Brown, A first- and second-order matrix theory for the design of beam transport systems and charged particle spectrometers, SLAC Report no. 75 (Stanford University, 1982)

  26. S.B. Kowalski, H.A. Enge, Program RAYTRACE (1987)

  27. H.A. Enge, Progress Reports, Laboratory for Nuclear Science (MIT, Feb. 1957 and May 1957)

  28. R. Middleton, S. Hinds, Nucl. Phys. 34, 404 (1962)

    Article  Google Scholar 

  29. G. Charpak et al., Nucl. Instrum. Methods 62, 235 (1968)

    Article  Google Scholar 

  30. H.A. Enge, S.B. Kowalski, Proceedings of the International Conference on Magnet Technology (MT 3), DESY, Hamburg, (1970) p. 366

  31. M.J. Levine, H.A. Enge, Bull. Am. Phys. Soc. 15, 1688 (1970)

    Google Scholar 

  32. H. Ikegami et al., Nucl. Instrum. Methods 187, 13 (1981)

    Article  ADS  Google Scholar 

  33. Y. Sugiyama et al., Nucl. Instrum. Methods 187, 25 (1981)

    Article  ADS  Google Scholar 

  34. T. Walcher, MPI-4-1974-V25 Report (Max Plank Institute für Kernphysik, Heidelberg, 1974)

  35. F. PiJhlhofer, contribution to the Study Weekend on Use of Magnetic Spectrometers in Nuclear Physics, Daresbury March, 1979

  36. B.L. Cohen, Rev. Sci. Instrum. 30, 415 (1959)

    Article  ADS  Google Scholar 

  37. B. Sjogren, Nucl. Instrum. Methods 7, 76 (1969)

    Article  ADS  Google Scholar 

  38. D.L. Hendrie, in Nuclear Spectroscopy and Reactions, Part A, edited by J. Cerny (Academic Press, New York, 1974) p. 365

  39. S.A. Martin et al., Nucl. Instrum. Methods 214, 281 (1983)

    Article  Google Scholar 

  40. A.M. van den Berg, KVI report KVI-165i (1991)

  41. L. Bianchi et al., Nucl. Instrum. Methods A 276, 509 (1989)

    Article  ADS  Google Scholar 

  42. M. Fujiwara et al., Nucl. Instrum. Methods A 422, 484 (1999)

    Article  ADS  Google Scholar 

  43. T. Kawabata et al., Nucl. Instrum. Methods B 266, 4201 (2008)

    Article  ADS  Google Scholar 

  44. D.J.J. de Lange et al., Nucl. Instrum. Methods A 412, 254 (1998)

    Article  ADS  Google Scholar 

  45. A.M. Stefanini et al., Nucl. Phys. A 701, 217 (2002)

    Article  ADS  Google Scholar 

  46. VAMOS Collaboration (H. Savajols), Nucl. Instrum. Methods B 204, 146 (2003)

    Article  ADS  Google Scholar 

  47. The R3B Collaboration (T. Aumann), Technical Proposal for the Design, Construction, Commissioning and Operation of R3B, A Universal Setup of Kinematical Complete Measurements of Reactions with Relativistic Radioactive Beams, 2005, Technical Report (2005)

  48. S. Shimoura et al., Nucl. Instrum. Methods B 266, 4131 (2008)

    Article  ADS  Google Scholar 

  49. K. Yoneda et al., RIKEN Accel. Prog. Rep. 42, 26 (2009)

    Google Scholar 

  50. A. Lazzaro et al., Nucl. Instrum. Methods A 591, 394 (2008)

    Article  ADS  Google Scholar 

  51. A. Lazzaro et al., Nucl. Instrum. Methods A 585, 136 (2008)

    Article  ADS  Google Scholar 

  52. C. Boiano et al., IEEE Trans. Nucl. Sci. 55, 3563 (2008)

    Article  ADS  Google Scholar 

  53. M. Cavallaro, First Application of the MAGNEX spectrometer: investigation of the 19F(7Li,7Be)19O reaction at 52.2 MeV, PhD Thesis, University of Catania, 2008

  54. M. Cavallaro et al., Eur. Phys. J. A 48, 59 (2012)

    Article  ADS  Google Scholar 

  55. D. Carbone, F. Cappuzzello, M. Cavallaro, Eur. Phys. J. A 48, 60 (2012)

    Article  ADS  Google Scholar 

  56. GEANT detector description and simulation tool (version 3.21), CERN Program Library Long Writeup W5013, Application Software Group, CERN, Geneva, Switzerland (1998)

  57. A. Lazzaro, The large acceptance and high resolution ray-tracing magnetic spectrometer MAGNEX, PhD Thesis, Università di Catania, 2002

  58. D.C. Carey, The Optics of Charged Particle Beams (Harwood Academic Publisher, London, 1987)

  59. M. Berz et al., Phys. Rev. C 47, 537 (1993)

    Article  ADS  Google Scholar 

  60. A. Lazzaro et al., Nucl. Instrum. Methods A 602, 494 (2009)

    Article  ADS  Google Scholar 

  61. A. Lazzaro et al., Nucl. Instrum. Methods A 570, 192 (2007)

    Article  ADS  Google Scholar 

  62. O. Bunemann et al., Can. J. Res. A 27, 191 (1949)

    Article  Google Scholar 

  63. K. Lau, J. Pyrlik, Nucl. Instrum. Methods A 366, 298 (1995)

    Article  ADS  Google Scholar 

  64. B. Schmidt, Nucl. Instrum. Methods A 252, 579 (1986)

    Article  ADS  Google Scholar 

  65. C. Boiano et al., IEEE Trans. Nucl. Sci. 51, 1 (2004)

    Article  ADS  Google Scholar 

  66. M. Bordessoule et al., Nucl. Instrum. Methods A 390, 79 (1997)

    Article  ADS  Google Scholar 

  67. A. Cunsolo et al., Eur. Phys. J. ST 150, 343 (2007)

    Article  Google Scholar 

  68. K. Lau, J. Pyrlik, Nucl. Instrum. Methods A 354, 376 (1995)

    Article  ADS  Google Scholar 

  69. G. Charpak, G. Melchart, G. Petersen, F. Sauli, Nucl. Instrum. Methods 167, 455 (1979)

    Article  ADS  Google Scholar 

  70. X. Liu et al., Nucl. Instrum. Methods A 432, 66 (1999)

    Article  ADS  Google Scholar 

  71. J. Ziegler, SRIM-2008, version 04 (Copyright: SRIM.com. All righs reserved)

  72. R. Degenhardt, M. Berz, Nucl. Instrum. Methods A 427, 151 (1999)

    Article  ADS  Google Scholar 

  73. M.A. Candido Ribeiro et al., Phys. Rev. Lett. 78, 3270 (1997)

    Article  ADS  Google Scholar 

  74. M. Cavallaro, to be published in Phys. Rev. C (2016)

  75. H. Laurent et al., Nucl. Instrum. Methods A 326, 517 (1993)

    Article  ADS  Google Scholar 

  76. M. Cavallaro et al., Nucl. Instrum. Methods A 700, 65 (2013)

    Article  ADS  Google Scholar 

  77. D. Pereira et al., Phys. Lett. B 710, 426 (2012)

    Article  ADS  Google Scholar 

  78. M. Cavallaro et al., Nucl. Instrum. Methods A 648, 46 (2011)

    Article  ADS  Google Scholar 

  79. J.R.B. Oliveira et al., J. Phys. G 40, 105101 (2013)

    Article  ADS  Google Scholar 

  80. F. Cappuzzello et al., Nucl. Instrum. Methods A 763, 314 (2014)

    Article  ADS  Google Scholar 

  81. F. Cappuzzello, to be published in Eur. Phys. J. A

  82. D. Pereira et al., Phys. Lett. B 670, 330 (2009)

    Article  ADS  Google Scholar 

  83. A. Kiss et al., Phys. Rev. Lett. 37, 1188 (1976)

    Article  ADS  Google Scholar 

  84. N. Austern, J.S. Blair, Ann. Phys. 33, 15 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  85. P. Fröbich, R. Lipperheide, Theory of Nuclear Reactions (Oxford University Press Inc., New York, 1996)

  86. Ch. Betsou et al., Eur. Phys. J. A 51, 55 (2015)

    Article  Google Scholar 

  87. V. Soukeras et al., Phys. Rev. C 91, 057601 (2015)

    Article  ADS  Google Scholar 

  88. R.A. Broglia, O. Hansen, C. Riedel, in Advances in Nuclear Physics, edited by M. Baranger, E. Vogt, Vol. 6 (Plenum Press, New York, 1973), pp. 287--457

  89. W.J. Mulhall, R.J. Liotta, J.A. Evans, R.P.J. Perazzo, Nucl. Phys. A 93, 261 (1967)

    Article  ADS  Google Scholar 

  90. C.H. Dasso, E. Maglione, G. Pollarolo, Nucl. Phys. A 500, 127 (1989)

    Article  ADS  Google Scholar 

  91. F. Cappuzzello et al., Phys. Lett. B 711, 347 (2012)

    Article  ADS  Google Scholar 

  92. M. Cavallaro et al., Phys. Rev. C 88, 054601 (2013)

    Article  ADS  Google Scholar 

  93. S. Kahana, A.J. Baltz, Adv. Nucl. Phys. 9, 1 (1977)

    Article  Google Scholar 

  94. http://www.fresco.org.uk/index.htm

  95. M. Cavallaro et al., Eur. Phys. J. Web of Conferences 66, 03017 (2014)

    Article  Google Scholar 

  96. M. Cavallaro et al., J. Phys. Conf. Ser. 515, 012003 (2015)

    Article  ADS  Google Scholar 

  97. F. Cappuzzello et al., AIP Conf. Proc. 1625, 41 (2014)

    Article  ADS  Google Scholar 

  98. M. Cavallaro et al., AIP Conf. Proc. 1377, 234 (2011)

    Article  ADS  Google Scholar 

  99. S. Mordechai et al., Nucl. Phys. A 301, 463 (1978)

    Article  ADS  Google Scholar 

  100. M. Cavallaro et al., AIP Conf. Proc. 1625, 38 (2014)

    Article  ADS  Google Scholar 

  101. A. Bonaccorso, I. Lhenry, T. Soumijarvi, Phys. Rev. C 49, 329 (1994)

    Article  ADS  Google Scholar 

  102. A. Bonaccorso, R.J. Charity, Phys. Rev. C 89, 024619 (2014)

    Article  ADS  Google Scholar 

  103. EXFOR nuclear data library, http://www-nds.iaea.org/exfor/exfor.htm

  104. I. Murata et al., Conf. Nucl. Data Sci. Technol. 2, 999 (2007)

    Google Scholar 

  105. D.M. Drake et al., Nucl. Sci. Eng. 63, 401 (1977)

    Google Scholar 

  106. H.C. Catron et al., Phys. Rev. 123, 218 (1961)

    Article  ADS  Google Scholar 

  107. G.J. FIsher, Phys. Rev. 108, 99 (1957)

    Article  ADS  Google Scholar 

  108. R. Bass, T.W. Bonner, H.P. Haenni, Nucl. Phys. 23, 122 (1961)

    Article  Google Scholar 

  109. P.H. Stelson, F.C. Campbell, Phys. Rev. 106, 1252 (1957)

    Article  ADS  Google Scholar 

  110. M.E. Battat, F.L. Ribe, Phys. Rev. 89, 80 (1953)

    Article  ADS  Google Scholar 

  111. D. Carbone et al., Phys. Rev. C 90, 064621 (2014)

    Article  ADS  Google Scholar 

  112. A. Bonaccorso, D.M. Brink, L. Lo Monaco, J. Phys. G 13, 1407 (1987)

    Article  ADS  Google Scholar 

  113. A. Bonaccorso, D.M. Brink, Phys. Rev. C 43, 299 (1991)

    Article  ADS  Google Scholar 

  114. A. Bonaccorso, D.M. Brink, Phys. Rev. C 44, 1559 (1991)

    Article  ADS  Google Scholar 

  115. D. Carbone et al., Eur. Phys. J. Web of Conferences 66, 03015 (2014)

    Article  Google Scholar 

  116. D. Carbone et al., Acta Phys. Pol. B 45, 431 (2014)

    Article  Google Scholar 

  117. D. Nicolosi et al., Acta Phys. Pol. B 44, 657 (2013)

    Article  ADS  Google Scholar 

  118. D. Carbone et al., J. Phys.: Conf. Ser. 312, 082016 (2011)

    ADS  Google Scholar 

  119. F. Cappuzzello et al., Nat. Commun. 6, 6743 (2015)

    Article  ADS  Google Scholar 

  120. D. Carbone, Eur. Phys. J. Plus 130, 143 (2015)

    Article  Google Scholar 

  121. R.A. Broglia, D.R. Bes, Phys. Lett. B 69, 129 (1977)

    Article  ADS  Google Scholar 

  122. S. Truong, H.T. Fortune, Phys. Rev. C 28, 977 (1983)

    Article  ADS  Google Scholar 

  123. D. Carbone et al., J. Phys.: Conf. Ser. 590, 012030 (2015)

    ADS  Google Scholar 

  124. D. Carbone, First experimental evidence of the Giant Pairing Vibration in atomic nuclei, PhD Thesis, University of Catania (2012)

  125. J.A. Scarpaci et al., Phys. Lett. B 428, 241 (1998)

    Article  ADS  Google Scholar 

  126. D. Lacroix, J.A. Scarpaci, P.h. Chomaz, Nucl. Phys. A 658, 273 (1999)

    Article  ADS  Google Scholar 

  127. E. Khan, N. Sandulescu, N.V. Giai, M. Grasso, Phys. Rev. C 69, 014314 (2004)

    Article  ADS  Google Scholar 

  128. B. Mouginot et al., Phys. Rev. C 83, 037302 (2011)

    Article  ADS  Google Scholar 

  129. W. von Oertzen, A. Vitturi, Rep. Prog. Phys. 64, 1247 (2001)

    Article  ADS  Google Scholar 

  130. A.M. Moro, F.M. Nunes, Nucl. Phys. A 767, 138 (2006)

    Article  ADS  Google Scholar 

  131. M. De Napoli et al., Acta Phys. Pol. B 45, 437 (2015)

    Article  Google Scholar 

  132. F. Cappuzzello et al., Nucl. Phys. A 739, 30 (2004)

    Article  ADS  Google Scholar 

  133. C. Nociforo Eur. Phys. J. A 27, s01, 283 (2006)

    Article  ADS  Google Scholar 

  134. S.E.A. Orrigo et al., Phys. Lett. B 633, 499 (2006)

    Article  ADS  Google Scholar 

  135. F. Cappuzzello et al., Europhys. Lett. 65, 766 (2004)

    Article  ADS  Google Scholar 

  136. M. Cavallaro, Nuovo Cimento C 34, 1 (2011)

    Google Scholar 

  137. F. Ajzenberg-Selove et al., Phys. Rev. C 32, 756 (1985)

    Article  ADS  Google Scholar 

  138. D.R. Tilley et al., Nucl. Phys. A 595, 1 (1995)

    Article  ADS  Google Scholar 

  139. W.P. Alford, B.M. Spicer, Adv. Nucl. Phys. 24, 1 (1998)

    Article  Google Scholar 

  140. T.N. Taddeucci et al., Nucl. Phys. A 469, 125 (1987)

    Article  ADS  Google Scholar 

  141. F. Osterfeld, Rev. Mod. Phys. 64, 491 (1992)

    Article  ADS  Google Scholar 

  142. D. Frekers et al., Nucl. Phys. A 916, 219 (2013)

    Article  ADS  Google Scholar 

  143. Y. Fujita, B. Rubio, W. Gelletly, Prog. Part. Nucl. Phys. 66, 549 (2011)

    Article  ADS  Google Scholar 

  144. G.R. Satchler, Direct Nuclear Reactions (Oxford Science Publications, 1983)

  145. F. Cappuzzello et al., Eur. Phys. J. A 51, 145 (2015)

    Article  ADS  Google Scholar 

  146. Report to the Nuclear Science Advisory Committee, Neutrinoless Double Beta Decay, 2015

  147. C. Agodi et al., AIP Conf. Proc. 1686, 020001 (2015)

    Article  Google Scholar 

  148. C. Agodi et al., Nucl. Part. Phys. Proc. 265, 28 (2015)

    Article  Google Scholar 

  149. F. Cappuzzello et al., J. Phys. Conf. Ser. 630, 012018 (2015)

    Article  ADS  Google Scholar 

  150. C. Agodi, LNS Activity Report 2013-2014, ISSN 1827-1561

  151. N.K. Glendenning, Phys. Rev. C 37, 2733 (1988)

    Article  ADS  Google Scholar 

  152. G. Colò et al., Phys. Rev. C 70, 024307 (2004)

    Article  ADS  Google Scholar 

  153. T. Li et al., Phys. Rev. Lett. 99, 162503 (2007)

    Article  ADS  Google Scholar 

  154. X. Chen et al., Phys. Rev. C 79, 024320 (2009)

    Article  ADS  Google Scholar 

  155. T. Aumann, Prog. Part. Nucl. Phys. 59, 3 (2007)

    Article  ADS  Google Scholar 

  156. H. Baba et al., Nucl. Phys. A 788, 188 (2007)

    Article  ADS  Google Scholar 

  157. C. Monrozeau et al., Phys. Rev. Lett. 100, 042501 (2008)

    Article  ADS  Google Scholar 

  158. M. Vandebrouck et al., Phys. Rev. Lett. 113, 032504 (2014)

    Article  ADS  Google Scholar 

  159. G. Raciti et al., Nucl. Instrum. Methods B 266, 4632 (2008)

    Article  ADS  Google Scholar 

  160. G. Raciti et al., Phys. Rev. Lett. 100, 192503 (2008)

    Article  ADS  Google Scholar 

  161. S. Bacca et al., Phys. Rev. Lett. 110, 042503 (2013)

    Article  ADS  Google Scholar 

  162. L.C. Chamon et al., Phys. Rev. C 66, 014610 (2002)

    Article  ADS  Google Scholar 

  163. E.E. Gross et al., Phys. Rev. 178, 1584 (1969)

    Article  ADS  Google Scholar 

  164. M. Baumgartner et al., Nucl. Phys. A 368, 189 (1981)

    Article  ADS  Google Scholar 

  165. T. Walcher, Phys. Lett. B 31, 442 (1970)

    Article  ADS  Google Scholar 

  166. R. Bijker, F. Iachello, Phys. Rev. Lett. 112, 152501 (2014)

    Article  ADS  Google Scholar 

  167. M. Itoh et al., Phys. Rev. C 84, 054308 (2011)

    Article  ADS  Google Scholar 

  168. M. Freer et al., Phys. Rev. C 86, 034320 (2012)

    Article  ADS  Google Scholar 

  169. W.R. Zimmerman et al., Phys. Rev. Lett. 110, 152502 (2013)

    Article  ADS  Google Scholar 

  170. A. Cunsolo et al., Phys. Rev. C 21, 2345 (1980)

    Article  ADS  Google Scholar 

  171. M. Voštinar et al., J. Instrum. 8, C12023 (2013)

    Article  Google Scholar 

  172. G. Raciti et al., Nucl. Phys. A 834, 784 (2010)

    Article  ADS  Google Scholar 

  173. M. De Napoli et al., Nucl. Instrum. Methods A 600, 618 (2009)

    Article  ADS  Google Scholar 

  174. M. Nikl et al., Phys. Status Solidi B 195, 311 (1996)

    Article  ADS  Google Scholar 

  175. E.V.D. van Loef et al., Nucl. Instrum. Methods A 486, 254 (2002)

    Article  ADS  Google Scholar 

  176. G.F. Knoll, Radiation Detection and Measurement (John Wiley & Sons, 1989) ISBN 0-471-81504-7

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Cappuzzello.

Additional information

Communicated by N. Alamanos

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cappuzzello, F., Agodi, C., Carbone, D. et al. The MAGNEX spectrometer: Results and perspectives. Eur. Phys. J. A 52, 167 (2016). https://doi.org/10.1140/epja/i2016-16167-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2016-16167-1

Navigation