Skip to main content
Log in

Comparing two-Boltzmann distribution and Tsallis statistics of particle transverse momentums in collisions at LHC energies

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

The transverse momentum distributions of final-state particles produced in collisions at energies available at the Large Hadron Collider (LHC) are studied by using the two-Boltzmann distribution and Tsallis statistics. Experimental distributions described by the two-Boltzmann distribution can be described by the Tsallis statistics. The two-temperature emission described by the two-Boltzmann distribution reflects temperature fluctuation of interacting system. The Tsallis statistics can describe the temperature fluctuation and the degree of non-equilibrium. The results calculated by the two-Boltzmann distribution and the Tsallis statistics are in agreement with the experimental data available at the LHC energies. In some cases, the two-Boltzmann distribution degenerates to (single) Boltzmann distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. BRAHMS Collaboration (I.G. Bearden et al.), Phys. Lett. B 523, 227 (2001).

    Article  Google Scholar 

  2. PHOBOS Collaboration (B.B. Back et al.), Phys. Rev. Lett. 87, 102303 (2001).

    Article  ADS  Google Scholar 

  3. BRAHMS Collaboration (I.G. Bearden et al.), Phys. Rev. Lett. 88, 202301 (2002).

    Article  ADS  Google Scholar 

  4. PHOBOS Collaboration (B.B. Back et al.), Phys. Rev. Lett. 91, 052303 (2003).

    Article  ADS  Google Scholar 

  5. H. Hastrup, P. Zerwas (Editors), QCD 20 Years Later (World Scientific, Singapore, 1993).

  6. J. Rafelski, B. Müller, Phys. Rev. Lett. 48, 1066 (1982).

    Article  ADS  Google Scholar 

  7. P. Koch, B. Müller, J. Rafelski, Phys. Rep. 142, 167 (1986).

    Article  ADS  Google Scholar 

  8. J.P. Blaizot, J. Phys. G 34, S243 (2007).

    Article  ADS  Google Scholar 

  9. D. Lacroix, S. Ayik, P. Chomaz, Prog. Part. Nucl. Phys. 52, 497 (2004).

    Article  ADS  Google Scholar 

  10. V.P. Konchakovski et al., Indian J. Phys. 85, 1 (2011).

    Article  ADS  Google Scholar 

  11. For the PHENIX Collaboration (C.L. da Silva), Indian J. Phys. 85, 15 (2011).

    Article  Google Scholar 

  12. A. Tawfik, Indian J. Phys. 85, 755 (2011).

    Article  ADS  Google Scholar 

  13. M. Szuba, Indian J. Phys. 85, 1057 (2011).

    Article  ADS  Google Scholar 

  14. A. Kaplan et al., Indian J. Phys. 85, 1615 (2011).

    Article  ADS  Google Scholar 

  15. G. Devi et al., Indian J. Phys. 86, 77 (2012).

    Article  ADS  Google Scholar 

  16. A. Tawfik, Indian J. Phys. 86, 641 (2012).

    Article  ADS  Google Scholar 

  17. F.-H. Liu, Phys. Lett. B 583, 68 (2004).

    Article  ADS  Google Scholar 

  18. F.-H. Liu, Phys. Rev. C 78, 014902 (2008).

    Article  ADS  Google Scholar 

  19. F.-H. Liu, Nucl. Phys. A 810, 159 (2008).

    Article  ADS  Google Scholar 

  20. For the ALICE Collaboration (M. Kowalski), Acta Phys. Pol. B 42, 859 (2011).

    Article  Google Scholar 

  21. ALICE Collaboration (K. Aamodt et al.), Eur. Phys. J. C 71, 1594 (2011).

    Article  ADS  Google Scholar 

  22. For the ALICE Collaboration (M. van Leeuwen), in Proceedings of the 2011 Hadron Collider Physics Symposium, Paris, France, November 14-18, 2011, arXiv:1201.5205 (2012).

  23. For the ALICE Collaboration (M. Floris), J. Phys. G 38, 124025 (2011).

    Article  ADS  Google Scholar 

  24. For the ALICE Collaboration (H. Appelshäuser), J. Phys. G 38, 124014 (2011).

    Article  ADS  Google Scholar 

  25. For the ALICE Collaboration (R. Preghenella), Talk given at the 2011 Europhysics Conference on High Energy Physics, Grenoble, Rhône-Alpes, France, July 21-27, 2011, arXiv:1111.0763 (2011).

  26. LHCb Collaboration (R. Aaij et al.), JHEP 02, 041 (2013).

    Article  ADS  Google Scholar 

  27. LHCb Collaboration (R. Aaij et al.), JHEP 02, 072 (2014).

    Article  ADS  Google Scholar 

  28. LHCb Collaboration (R. Aaij et al.), JHEP 06, 064 (2013).

    Article  ADS  Google Scholar 

  29. C.-R. Meng, Chin. Phys. Lett. 26, 102501 (2009).

    Article  ADS  Google Scholar 

  30. C. Tsallis, J. Stat. Phys. 52, 479 (1988).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  31. G. Wilk, Z. Włodarczyk, in Proceedings of the 6th International Workshop on Relativistic Aspects of Nuclear Physics (RANP2000) (São Paulo, Brazil, October 17-20, 2000), edited by T. Kodama, C.E. Aguiar, H.-T. Elze, F. Grassi, Y. Hama, G. Krein (World Sciencetific, Singapore, 2001) pp. 78--96, arXiv:hep-ph/00111892v2 (2000). .

  32. W.M. Alberico, P. Czerski, A. Lavagno, M. Nardi, V. Somá, Physica A 387, 467 (2008).

    Article  ADS  Google Scholar 

  33. C. Tsallis, Braz. J. Phys. 39, 337 (2009).

    Article  ADS  Google Scholar 

  34. G. Wilk, Z. Włodarczyk, Phys. Rev. C 79, 054903 (2009).

    Article  ADS  Google Scholar 

  35. W.M. Alberico, A. Lavagno, Eur. Phys. J. A 40, 313 (2009).

    Article  ADS  Google Scholar 

  36. J. Cleymans, D. Worku, Eur. Phys. J. A 48, 160 (2012).

    Article  ADS  Google Scholar 

  37. C.-Y. Wong, G. Wilk, Phys. Rev. D 87, 114007 (2013).

    Article  ADS  Google Scholar 

  38. J. Cleymans, G.I. Lykasov, A.S. Parvan, A.S. Sorin, O.V. Teryaev, D. Worku, Phys. Lett. B 723, 351 (2013).

    Article  ADS  Google Scholar 

  39. A. Lavagno, Phys. Rev. C 81, 044909 (2010).

    Article  ADS  Google Scholar 

  40. B.-C. Li, Y.-Z. Wang, F.-H. Liu, Phys. Lett. B 275, 352 (2013).

    Article  ADS  Google Scholar 

  41. F.-H. Liu, Y.-H. Chen, H.-R. Wei, B.-C. Li, Adv. High Energy Phys. 2013, 965735 (2013).

    Google Scholar 

  42. E. Schnedermann, J. Sollfrank, U. Heinz, Phys. Rev. C 48, 2462 (1993).

    Article  ADS  Google Scholar 

  43. H. Zhao, F.-H. Liu, Adv. High Energy Phys. 2014, 742193 (2014).

    Google Scholar 

  44. K. Urmossy, T.S. Biró, G.G. Barnaföldi, Z. Xu, arXiv:1405.3963 (2014).

  45. T.S. Biró, G.G. Barnaföldi, P. Ván, K. Ürmössy, arXiv:1404.1256 (2014).

  46. V.V. Begun, M. Gazdzicki, M.I. Gorenstein, Phys. Rev. C 78, 024904 (2008).

    Article  ADS  Google Scholar 

  47. K. Urmossy, G.G. Barnaföldi, T.S. Biró, Phys. Lett. B 701, 111 (2011).

    Article  ADS  Google Scholar 

  48. K. Urmossy, G.G. Barnaföldi, T.S. Biró, Phys. Lett. B 718, 125 (2012).

    Article  ADS  Google Scholar 

  49. C. Tsallis, Eur. Phys. J. A 40, 257 (2009).

    Article  MathSciNet  ADS  Google Scholar 

  50. T.S. Biró, Eur. Phys. J. A 40, 255 (2009).

    Article  ADS  Google Scholar 

  51. T.S. Biró, Physica A 300, 424 (2001).

    Article  MathSciNet  Google Scholar 

  52. C. Beck, Eur. Phys. J. A 40, 267 (2009).

    Article  ADS  Google Scholar 

  53. T.S. Biró, G. Purcsel, K. Urmossy, Eur. Phys. J. A 40, 325 (2009).

    Article  ADS  Google Scholar 

  54. T. Kodama, T. Koide, Eur. Phys. J. A 40, 289 (2009).

    Article  ADS  Google Scholar 

  55. G. Wilk, Z. Włodarczyk, Eur. Phys. J. A 40, 299 (2009).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fu-Hu Liu.

Additional information

Communicated by Xin-Nian Wang

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, FH., Gao, YQ. & Li, BC. Comparing two-Boltzmann distribution and Tsallis statistics of particle transverse momentums in collisions at LHC energies. Eur. Phys. J. A 50, 123 (2014). https://doi.org/10.1140/epja/i2014-14123-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2014-14123-9

Keywords

Navigation