Skip to main content
Log in

Modification of Cellulose Textile Materials with Zinc-Oxide Nanoparticles and Investigation of Their Antibacterial Properties

  • FUNCTIONAL AND CONSTRUCTION NANOMATERIALS
  • Published:
Nanobiotechnology Reports Aims and scope Submit manuscript

Abstract

Methods for the synthesis of nanoparticles (NPs) of zinc oxide in an aqueous-alcohol medium are described. Using scanning electron microscopy (SEM), it is shown that NPs with a size of 5–49 nm are formed. Optimal conditions for the treatment of cellulose materials with aqueous solutions of zinc-oxide NPs are developed. SEM studies confirm the presence of zinc-oxide NPs on the surface of cellulose materials, which are rather unevenly distributed. Antimicrobial activity is assessed by the degree of inhibition of bacterial growth (Escherichia coli) on materials treated with zinc-oxide NPs compared to the control samples. Cellulose materials modified with zinc oxide NPs are shown to have antibacterial activity against bacteria and molds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. J. Jiang, J. Pi, and J. Cai, Bioinorg. Chem. Appl. 2018, 1062562 (2018). https://doi.org/10.1155/2018/1062562

    Article  CAS  Google Scholar 

  2. M. Alavi and A. Nokhodchi, Carbohydr. Polym. 227, 115349 (2020). https://doi.org/10.1016/j.carbpol.2019.115349

    Article  CAS  Google Scholar 

  3. Th. A. Singh, J. Das, and P. C. Sil, Adv. Colloid Interface Sci. 286, 102317 (2020). https://doi.org/10.1016/j.cis.2020.102317

    Article  CAS  Google Scholar 

  4. H. Mirzaei and M. Darroudi, Ceram. Int. 43, 907 (2017). https://doi.org/10.1016/j.ceramint.2016.10.051

    Article  CAS  Google Scholar 

  5. V. P. Singh, K. Seep, H. S. Kushwaha, et al., Constr. Build. Mater. 158, 285 (2018). https://doi.org/10.1016/j.conbuildmat.2017.10.035

    Article  CAS  Google Scholar 

  6. T. Khalafi, F. Foad Buazar, and K. Ghanemi, Sci. Rep. 9 (2019). https://doi.org/10.1038/s41598-019-43368-3

  7. D. Ponnamma, J.-J. Cabibihan, M. Rajan, et al., Mater. Sci. Eng. C 98, 1210 (2019). https://doi.org/10.1016/j.msec.2019.01.08

    Article  CAS  Google Scholar 

  8. O. Emmanuel, E. O. Ogunsona, R. Muthuraj, et al., Appl. Mater. Today 18, 100473 (2020). https://doi.org/10.1016/j.apmt.2019.100473

    Article  Google Scholar 

  9. J. Wojnarowicz, T. Chudoba, and W. Lojkowski, Nanomaterials 10, 1086 (2020). https://doi.org/10.3390/nano10061086

  10. V. N. Kalpana and V. D. Rajeswari, Bioinorg. Chem. Appl. 2018, 3569758 (2018). https://doi.org/10.1155/2018/3569758

    Article  CAS  Google Scholar 

  11. K. S. Siddiqi, A. Rahman, Tajuddin, and A. Husen, Nanoscale Res. Lett. 13, 141 (2018). https://doi.org/10.1186/s11671-018-2532-3

    Article  CAS  Google Scholar 

  12. B. L. Silva, B. L. Caetano, and B. G. Chiari-Andreo, Colloids Surf., B 117, 440 (2019). https://doi.org/10.1016/j.colsurfb.2019.02.013

    Article  CAS  Google Scholar 

  13. A. Król, P. Pomastowski, K. Rafińska, et al., Adv. Colloid Interface Sci. 249, 37 (2017). https://doi.org/10.1016/j.cis.2017.07.033

  14. M. Maruthupy, T. Muneeswaran, G. Rajivgandhi, et al., Mater. Today Commun. 22, 100766 (2020). https://doi.org/10.1016/j.mtcomm.2019.100766

    Article  CAS  Google Scholar 

  15. H. Agarwal, S. Menon, S. V. Kumar, and S. Rajeshkumar, Chem.-Biol. Interact. 286, 60 (2018). https://doi.org/10.1016/j.cbi.2018.03.008

    Article  CAS  Google Scholar 

  16. G. Biliuta and S. Coseri, Coord. Chem. Rev. 383, 155 (2019). https://doi.org/10.1016/j.ccr.2019.01.007

    Article  CAS  Google Scholar 

  17. H. Kargarzadeh, M. Mariano, D. Gopakumar, et al., Cellulose 25, 2151 (2018). https://doi.org/10.1007/s10570-018-1723-5

    Article  CAS  Google Scholar 

  18. A. Farooq, M. K. Patoary, M. Zhang, et al., Int. J. Biol. Macromol. 154, 1050 (2020). https://doi.org/10.1016/j.ijbiomac.2020.03.16316

    Article  CAS  Google Scholar 

  19. A. Ali, S. Ambreen, Q. Maqbool, et al., J. Phys. Chem. Solids 98, 174 (2016). https://doi.org/10.1016/j.jpcs.2016.07.007

    Article  CAS  Google Scholar 

  20. J. Ma, W. Zhu, D. Min, et al., Cellulose 23, 3199 (2016). https://doi.org/10.1007/s10570-016-0999-6

    Article  CAS  Google Scholar 

  21. S.-W. Zhao, C.-R. Guo, Y.-Z. Hu, et al., Open Chem. 16, 9 (2018). https://doi.org/10.1515/chem-2018-0006

    Article  CAS  Google Scholar 

  22. F. Wahid, Y.-X. Duan, X.-H. Hu, et al., Int. J. Biol. Macromol. 132, 692 (2019). https://doi.org/10.1016/j.ijbiomac.2019.03.2400141-8130

    Article  CAS  Google Scholar 

  23. S. Pal, S. Mondal, and J. Maity, Mater. Technol. 33, 884 (2018). https://doi.org/10.1080/10667857.2018.1521592

    Article  CAS  Google Scholar 

  24. A. G. Hassabo, M. E. El-Naggar, A. L. Mohamed, and A. A. Hebeish, Carbohydr. Polym. 210, 144 (2019). https://doi.org/10.1016/j.carbpol.2019.01.066

    Article  CAS  Google Scholar 

  25. F. Wahid, Y.-X. Duan, X.-H. Hu, et al., Int. J. Biol. Macromol. 132, 692 (2019). https://doi.org/10.1016/j.ijbiomac.2019.03.2400141-8130

    Article  CAS  Google Scholar 

  26. K. Varaprasad, G. M. Raghavendra, T. Jayaramudu, and J. Seo, Carbohydr. Polym. 135, 349 (2016). https://doi.org/10.1016/j.carbpol.2015.08.078

    Article  CAS  Google Scholar 

  27. A. Verbi, M. Gorjanc, and B. Simon, Coatings 9, 550 (2019). https://doi.org/10.3390/coatings9090550

    Article  CAS  Google Scholar 

  28. X. Tian, Y. Li, S. Wan, et al., J. Nanomater. 10 (2017). https://doi.org/10.1155/2017/9689035

  29. B. R. Tausarova, G. A. Baimakhanov, and S. O. Abilkasova, Vestn. Almatin. Tekhnol. Univ., No. 1 (126), 32 (2020).

  30. M. Pintaric, M. S. Skoc, V. L. Bilic, et al., Polymers 12, 1210 (2020). https://doi.org/10.3390/polym12061210

  31. S. C. Zhang and X. G. Li, Colloids Surf., A 226, 35 (2003). https://doi.org/10.1016/S0927-7757(03)00383-2

    Article  CAS  Google Scholar 

  32. W. N. W. Ismail, J. Sol-Gel Sci. Technol. 78, 698 (2016). https://doi.org/10.1007/s10971-016-4027-y

    Article  CAS  Google Scholar 

  33. M. F. Khan, A. H. Ansari, M. Hameedullah, et al., Sci. Rep. 6, 27689 (2016). https://doi.org/10.1038/srep27689.-34

  34. M. C. Gonçalves, Molecules 23, 2021 (2018). https://doi.org/10.3390/molecules23082021

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. R. Taussarova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taussarova, B.R., Jurinskaya, I.M. Modification of Cellulose Textile Materials with Zinc-Oxide Nanoparticles and Investigation of Their Antibacterial Properties. Nanotechnol Russia 17, 366–371 (2022). https://doi.org/10.1134/S263516762203020X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S263516762203020X

Navigation