Skip to main content
Log in

Neutralization Dialysis of Phenylalanine and Mineral Salt Mixed Solution: Effect of Concentration and Flow Rate of Acid and Alkali Solutions

  • Published:
Membranes and Membrane Technologies Aims and scope Submit manuscript

Abstract

Amino acids that are ampholytes can be effectively separated and purified by the method of neutralization dialysis (ND), whose advantage is the ability to control the pH value of the solution without adding reagents. An important task is to optimize the parameters of the ND process to ensure minimal losses of amino acids during their isolation from mixed solutions. An experimental study of the process of demineralization of the phenylalanine and sodium chloride equimolar mixture by the ND method is carried out. It is established that varying the concentration and flow rate of acid and alkali solutions in the corresponding compartments of the dialysis cell allows for regulating the pH value of the solution being desalted and controlling the amount of amino acid losses. Halving the acid concentration (from 0.10 to 0.05 M) allowes reducing the losses of phenylalanine from 18.3 to 16.4%, and using a lower solution flow rate in the acid compartment (0.75 instead of 1.50 cm s–1) makes it possible to reduce these losses to 14.2%. At the same time, in all experiments, the electrical conductivity of the solution being desalted decreases by 90%, which suggests a high demineralization rate and the effectiveness of the method used to isolate phenylalanine from the mixed solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. M. D’Este, M. Alvarado-Morales, and I. Angelidaki, Biotechnol. Adv. 36, 14 (2018).

    Article  PubMed  Google Scholar 

  2. M. Ikeda, in Microbial Production of L-Amino Acids (Springer, Berlin, Heidelberg, 2002).

    Google Scholar 

  3. K. B. Alia, H. Nadeem, I. Rasul, F. Azeem, S. Hussain, M. H. Siddique, S. Muzammil, M. Riaz, and S. Nasir, in Applications of Ion Exchange Materials in Biomedical Industries (Springer, Cham, 2019).

    Google Scholar 

  4. R. Zadmard, K. Tabar-Heydar, and M. Imani, J. Chromatogr. Sci. 53, 702 (2015).

    Article  CAS  PubMed  Google Scholar 

  5. K. Kupnik, Ž. Knez, M. Primožič, and M. Leitgeb, Sep. Purif. Rev. 52, 58 (2022).

    Article  Google Scholar 

  6. T.-C. Chiu, Anal. Bioanal. Chem. 405, 7919 (2013).

    Article  CAS  PubMed  Google Scholar 

  7. A. Giuffrida, G. Maccarrone, V. Cucinotta, S. Orlandini, and A. Contino, J. Chromatogr., A 1363, 41 (2014).

  8. B. B. Vyas and P. Ray, Desalination 362, 104 (2015).

    Article  CAS  Google Scholar 

  9. J. Ecker, T. Raab, and M. Harasek, J. Membr. Sci. 389, 389 (2012).

    Article  CAS  Google Scholar 

  10. J. M. K. Timmer, M. P. J. Speelmans, and H. C. van der Horst, Sep. Purif. Technol. 14, 133 (1998).

    Article  CAS  Google Scholar 

  11. G. Wang, C. Zhang, M. Sun, X. Zhang, C. Wu, and Y. Wu, Sep. Purif. Technol. 188, 539 (2017).

    Article  CAS  Google Scholar 

  12. T. Eliseeva and A. Kharina, Membranes 12 (2022).

  13. K. Sato, J. Membr. Sci. 309, 175 (2008).

    Article  CAS  Google Scholar 

  14. N. Takai, T. Yamabe, and M. Seno, J. Soc. Chem. Ind. Jpn. 67, 893 (1964).

    CAS  Google Scholar 

  15. K. Kikuchi, T. Gotoh, H. Takahashi, S. Higashino, and J. S. Dranoff, J. Chem. Eng. Jpn. 28, 103 (1995).

    Article  CAS  Google Scholar 

  16. M. Kumar, B. P. Tripathi, and V. K. J. Shahi, Chem. Technol. Biotech. 85, 648 (2010).

    Article  CAS  Google Scholar 

  17. V. V. Nikonenko, N. D. Pismenskaya, E. I. Belova, Ph. Sistat, P. Huguet, G. Pourcelly, and Ch. Larchet, Adv. Colloid Interface Sci. 160, 101 (2010).

    Article  CAS  PubMed  Google Scholar 

  18. X. Lin, J. Pan, M. Zhou, Y. Xu, J. Lin, J. Shen, C. Gao, B. van der Bruggen, Ind. Eng. Chem. Res. 55, 2813 (2016).

    Article  CAS  Google Scholar 

  19. A. Merkel, A. M. Ashrafi, and J. Ečer, J. Membr. Sci. 555, 185 (2018).

    Article  CAS  Google Scholar 

  20. V. A. Shaposhnik and T. V. Eliseeva, J. Membr. Sci. 161, 223 (1999).

    Article  CAS  Google Scholar 

  21. M. Igawa, K. Echizenya, T. Hayashita, and M. Seno, Bull. Chem. Soc. Jpn. 60, 381 (1987).

    Article  CAS  Google Scholar 

  22. A. Kozmai, M. Chérif, L. Dammak, M. Bdiri, C. Larchet, and V. Nikonenko, J. Membr. Sci. 540, 60 (2017).

    Article  CAS  Google Scholar 

  23. M. Chérif, I. Mkacher, L. Dammak, A. Ben Salah, K. Walha, D. Grande, and V. Nikonenko, Desalination 361, 13 (2015).

    Article  Google Scholar 

  24. M. Chérif, I. Mkacher, L. Dammak, A. Ben Salah, K. Walha, V. Nikonenko, S. Korchane, and D. Grande, Desalin. Water Treat. 57, 144033 (2016).

    Google Scholar 

  25. K. Sato, T. Yonemoto, and T. Tadaki, J. Chem. Eng. Jpn. 26, 68 (1993).

    Article  CAS  Google Scholar 

  26. M. Igawa, H. Tanabe, T. Ida, F. Yamamoto, and H. Okochi, Chem. Lett. 22, 1591 (1993).

    Article  Google Scholar 

  27. M. Bleha and G. A. Tishchenko, J. Membr. Sci. 73, 305 (1992).

    Article  CAS  Google Scholar 

  28. A. Kozmai, E. Goleva, V. Vasil’eva, V. Nikonenko, and N. Pismenskaya, Membranes 9, 171 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. A. M. Saud, V. I. Vasil’eva, E. A. Goleva, E. M. Akberova, and A. T. Kozlov, Sorbts. Khromatogr. Prots. 20, 749 (2020).

    CAS  Google Scholar 

  30. V. I. Vasil’eva, A. M. Saud, and E. M. Akberova, Membr. Membr. Technol. 3, 98 (2021).

    Article  Google Scholar 

  31. M. V. Porozhnyy, A. E. Kozmai, A. A. Mareev, and V. V. Gil, Membr. Membr. Technol. 4, 306 (2022).

    Article  CAS  Google Scholar 

  32. A. Durán, J. M. Monteagudo, I. Sanmartín, and P. Gómez, Ultrason. Sonochem. 20, 785 (2013).

    Article  PubMed  Google Scholar 

  33. D. R. Lide, Handbook of Chemistry and Physics (CRC Press, Boca Raton, FL, 2005).

    Google Scholar 

  34. V. I. Vasil’eva and A. M. Saud, Analit. Kontrol 26, 222 (2022).

    Google Scholar 

  35. G. Q. Chen, K. Wei, A. Hassanvand, B. D. Freeman, and S. E. Kentish, Water Res. 175, 115681 (2020).

    Article  CAS  PubMed  Google Scholar 

  36. R. A. Robinson and R. H. Stokes, Electrolyte Solutions, 2nd Revised Ed. (Dover Publications Inc., New York, 2003).

  37. G. A. Denisov, G. Tishchenko, M. Bleha, and L. Shataeva, J. Membr. Sci. 98, 13 (1995).

    Article  CAS  Google Scholar 

Download references

Funding

The study was supported by the Russian Science Foundation, grant no. 21-79-00114, https://rscf.ru/en/project/21-79-00114/.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Porozhnyy.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Avdeeva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Porozhnyy, M.V., Gil, V.V. & Kozmai, A.E. Neutralization Dialysis of Phenylalanine and Mineral Salt Mixed Solution: Effect of Concentration and Flow Rate of Acid and Alkali Solutions. Membr. Membr. Technol. 5, 313–322 (2023). https://doi.org/10.1134/S2517751623050086

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2517751623050086

Keywords:

Navigation