Skip to main content
Log in

Experimental Determination of the Gas Transport Characteristics of Polysulfone and Poly(phenylene oxide) Hollow Fiber Membranes in Relation to Noble Gases

  • Published:
Membranes and Membrane Technologies Aims and scope Submit manuscript

Abstract

Commercially available hollow fiber membranes made of two polymers, namely, polysulfone and poly(phenylene oxide), are studied experimentally. The main task of this study is to estimate the gas transport characteristics of these membranes in relation to air components and noble gases. Therefore, the values of permeability of the membranes for nitrogen, oxygen, helium, argon, xenon and krypton are measured. Particular attention is paid to the xenon-containing air mixture, since the capture of medical xenon is an urgent chemical and technological problem due to a high cost of the process of obtaining this gas. The values of permeability of the two membranes for individual gases are determined, and the values of ideal selectivity are calculated. For example, the values of membrane permeability for argon, krypton, and xenon are 20.8, 8.4, and 6.8 GPU for the polysulfone membrane and 19.5, 6.2, and 4.8 GPU for the poly(phenylene oxide) membrane, respectively. It is found that the xenon permeability of these membranes in the case of separation of the gas mixture composed of nitrogen, oxygen, and xenon is 5.9 and 4.1 GPU for polysulfone and poly(phenylene oxide). It is also shown that the performance of membrane modules based on polysulfone and poly(phenylene oxide) depends on the total membrane area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. B. Sreenu, R. Sarkar, S. S. S. Kumar, S. Chatterjee, and G. A. Rao, Mater. Sci. Eng. A 797, 140254 (2020).

    Article  CAS  Google Scholar 

  2. J. Yang, U. Stegmaier, C. Tang, M. Steinbrück, M. Große, S. Wang, and H. J. Seifert, J. Nucl. Mater. 547, 152806 (2021).

    Article  CAS  Google Scholar 

  3. A. V. Vorotyntsev, A. N. Petukhov, M. M. Trubyanov, A. A. Atlaskin, D. A. Makarov, M. S. Sergeeva, I. V. Vorotyntsev, and V. M. Vorotyntsev, Rev. Chem. Eng. 37 (2021).

  4. Y. Sui, A. Hess-Dunning, P. Wei, E. Pentzer, R. M. Sankaran, and C. A. Zorman, Adv. Mater. Technol. 4, 1900834 (2019).

  5. A. P. Torbin, A. K. Chernyshov, M. I. Svistun, and P. A. Mikheyev, J. Phys.: Conf. Ser. 2067, 012014 (2021).

    Google Scholar 

  6. M. M. Trubyanov, G. M. Mochalov, S. S. Suvorov, E. S. Puzanov, A. N. Petukhov, I. V. Vorotyntsev, and V. M. Vorotyntsev, J. Chromatogr. A 1560, 71 (2018).

    Article  CAS  PubMed  Google Scholar 

  7. Y. Z. Wang, T. T. Li, H. L. Cao, and W. C. Yang, Medical Gas Res. 9, 80 (2019).

    Article  CAS  Google Scholar 

  8. T. A. Aarhaug, O. Kjos, M. Isaksen, and J. O. Polden, 2, 743 (2023).

  9. M. S. Kim, T. Lee, Y. Son, J. Park, M. Kim, H. Eun, J. W. Park, and Y. Kim, Processes 10, 2401 (2022).

    Article  CAS  Google Scholar 

  10. F. L. Tabares and I. Junkar, Molecules 26, 1903 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. T. G. Ustyugova and M. Y. Kupriyanov, Chem. Petr. Eng. 56, 371 (2020).

    Article  CAS  Google Scholar 

  12. D. F. Sanders, Z. P. Smith, R. Guo, L. M. Robeson, J. E. McGrath, D. R. Paul, and B. D. Freeman, Polymer 54, 4729 (2013).

    Article  CAS  Google Scholar 

  13. R. Castro-Muñoz, K. V. Agrawal, and J. Coronas, RSC Adv. 10, 12653 (2020).

  14. V. L. Bondarenko, I. A. Losyakov, O. V. D’yachenko, and T. V. D’yachenko, Chem. Pet. Eng. 54, 728 (2019).

    Article  CAS  Google Scholar 

  15. V. L. Bondarenko, I. A. Losyakov, O. V. D’yachenko, and T. V. D’yachenko, Chem. Pet. Eng. 54, 735 (2019).

    Article  CAS  Google Scholar 

  16. E. S. Miandoab, S. H. Mousavi, S. E. Kentish, and C. A. Scholes, Sep. Purif. Technol. 262, 118349 (2021).

    Article  CAS  Google Scholar 

  17. H. Li, H. Liu, Y. Li, J. Nan, C. Shi, and S. Li, Energies 14, 2266 (2021).

    Article  CAS  Google Scholar 

  18. J. Park, S. J. Kim, I. Lee, J. W. Shin, Y. I. Park, K. Kim, and Y. K. Park, Chem. Eng. Res. Des. 172, 204 (2021).

    Article  CAS  Google Scholar 

  19. Y. Xu, Y. Tang, C. He, Y. Shu, Q. L. Chen, and B. J. Zhang, Chem. Eng. Proc. 177, 108982 (2022).

    Article  CAS  Google Scholar 

  20. L. Yang, S. Qian, X. Wang, X. Cui, B. Chen, and H. Xing, Chem. Soc. Rev. 49, 5359 (2020).

    Article  CAS  PubMed  Google Scholar 

  21. A. A. Atlaskin, M. M. Trubyanov, N. R. Yanbikov, M. V. Bukovsky, P. N. Drozdov, V. M. Vorotyntsev, and I. V. Vorotyntsev, Pet. Chem. 58, 508 (2018).

    Article  CAS  Google Scholar 

  22. A. N. Petukhov, A. A. Atlaskin, S. S. Kryuchkov, K. A. Smorodin, D. M. Zarubin, A. N. Petukhova, M. E. Atlaskina, A. V. Nyuchev, A. V. Vorotyntsev, M. M. Trubyanov, I. V. Vorotyntsev, and V. M. Vorotynstev, Chem. Eng. J. 421, 127726 (2021).

    Article  CAS  Google Scholar 

  23. S. P. Nunes, P. Z. Culfaz-Emecen, G. Z. Ramon, T. Visser, G. H. Koops, W. Jin, and M. Ulbricht, J. Membr. Sci. 598, 117761 (2020).

    Article  CAS  Google Scholar 

  24. M. Z. Ahmad, T. A. Peters, N. M. Konnertz, T. Visser, C. Tellez, J. Coronas, V. Fila, W. M. de Vos, and N. E. Benes, Sep. Purif. Technol. 230, 115858 (2020).

    Article  CAS  Google Scholar 

  25. I. V. Vorotyntsev, A. A. Atlaskin, M. M. Trubyanov, A. N. Petukhov, O. R. Gumerova, A. I. Akhmetshina, and V. M. Vorotyntsev, Desalin. Water Treat. 75, 305 (2017).

    CAS  Google Scholar 

  26. W. Suwaileh, N. Pathak, H. Shon, and N. Hilal, Desalination 485, 114455 (2020).

    Article  CAS  Google Scholar 

  27. A. Y. Alent’ev, A. V. Volkov, I. V. Vorotyntsev, A. L. Maksimov, and A. B. Yaroslavtsev, Membr. Membr. Technol. 3, 255 (2021).

  28. M. S. Sergeeva, N. A. Mokhnachev, D. N. Shablykin, A. V. Vorotyntsev, D. M. Zarubin, A. A. Atlaskin, M. M. Trubyanov, I. V. Vorotyntsev, V. M. Vorotyntsev, and A. N. Petukhov, J. Nat. Gas Sci. Eng. 86, 103740 (2021).

    Article  CAS  Google Scholar 

  29. K. A. Smorodin, A. A. Atlaskin, D. M. Zarubin, A. N. Petukhov, S. S. Kryuchkov, A. N. Petukhova, M. E. Atlaskina, A. N. Stepakova, A. N. Markov, and I. V. Vorotyntsev, Membr. Membr. Technol. 4, 206 (2022).

    Article  CAS  Google Scholar 

  30. A. Y. Alentiev, I. S. Levin, M. I. Buzin, N. A. Belov, R. Y. Nikiforov, S. V. Chirkov, I. V. Blagodatskikh, A. S. Kechekyan, P. A. Kechekyan, V. G. Bekeshev, V. E. Ryzhikh, and Y. P. Yampolskii, Polymer 226, 123804 (2021).

  31. L. Brožová, J. Žitka, and E. Tomšík, Polym. Test. 94, 107037 (2021).

    Article  Google Scholar 

  32. G. Dibrov, M. Ivanov, M. Semyashkin, V. Sudin, N. Fateev, and G. Kagramanov, Fibers 7, 43 (2019).

    Article  CAS  Google Scholar 

  33. C. L. Aitken, W. J. Koros, and D. R. Paul, Macromolecules 25, 3424 (1992).

    Article  CAS  Google Scholar 

  34. H. Julian and I. G. Wenten, IOSR J. Eng. 2, 484 (2012).

    Google Scholar 

  35. Z.-X. Low, P. M. Budd, N. B. McKeown, and D. A. Patterson, Chem. Rev. 118, 5871 (2018).

    Article  CAS  PubMed  Google Scholar 

  36. I. Pinnau, J. Membr. Sci. 241, 363 (2004).

    Article  CAS  Google Scholar 

  37. S. A. Stern, J. Membr. Sci. 94, 1 (1994).

    Article  Google Scholar 

  38. Y. Yampolskii, I. Pinnau, and B. D. Freeman, Materials Science of Membranes for Gas and Vapor Separation (2006).

Download references

Funding

The main part of the work was supported by the Russian Science Foundation, grant no. 21-79-00222.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Atlaskin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by T. Soboleva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Atlaskin, A.A., Kryuchkov, S.S., Stepakova, A.N. et al. Experimental Determination of the Gas Transport Characteristics of Polysulfone and Poly(phenylene oxide) Hollow Fiber Membranes in Relation to Noble Gases. Membr. Membr. Technol. 5, 352–359 (2023). https://doi.org/10.1134/S2517751623050013

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2517751623050013

Keywords:

Navigation