Skip to main content
Log in

Improvement of ion conductivity and selectivity of heterogeneous membranes by sulfated zirconia modification

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Inorganic-organic composites based on the foil and standard RALEX® cation-exchange heterogeneous membranes (Mega a.s., Czech Republic) were prepared by in situ modification with sulfated zirconia (S-ZrO2). The composite membranes were characterized by SEM, TGA, X-ray diffraction, and FTIR spectroscopy. The effect of S-ZrO2 doping on membrane transport properties was studied using measurements of water uptake, ion-exchange capacity, conductivity, cation diffusion, hydrogen permeability, current-voltage characteristics, and membrane specific permselectivity (Ca2+/Na+). The S-ZrO2 incorporation leads to an increase in conductivity and permselectivity of the composite membranes. The proton conductivity of the S-ZrO2-doped foil membrane (0.0316 S/cm at 30°С) is 4 times higher than that of the pristine membrane. The Ca2+/Na+ permselectivity of the standard RALEX® CM membrane doped by S-ZrO2 reaches 3.8 at low current densities. Moreover, the composite membranes retain their selectivity during the long-term tests (> 50 h continuous electrodialysis). The sulfated zirconia doping of heterogeneous membranes demonstrated an excellent separation efficiency that can be used in wastewater treatment, desalination, and related electromembrane separation processes as well as to reduce scaling of electrodialysis modules.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Strathmann H, Grabowski A, Eigenberger G (2013) Ion-exchange membranes in the chemical process industry. Ind Eng Chem Res 52:10364–10379. https://doi.org/10.1021/ie4002102

    Article  CAS  Google Scholar 

  2. Rabbani Esfahani M, Aghapour Aktij S, Dabaghian Z, Dadashi Firouzjaei M, Rahimpour A, Eke J, Escobar IC, Abolhassani M, Greenlee LF, Esfahani AR, Sadmani A, Koutahzadeh N (2019) Nanocomposite membranes for water separation and purification: fabrication, modification, and applications Separ. Purific Technol 213:465–499. https://doi.org/10.1016/j.seppur.2018.12.050

    Article  CAS  Google Scholar 

  3. Hong GJ, Zhang B, Glabman S, Uzal N, Dou X, Zhang H, Wei X, Chen Y (2015) Potential ion exchange membranes and system performance in reverse electrodialysis for power generation: a review. J Membr Sci 486:71–88. https://doi.org/10.1016/j.memsci.2015.02.039

    Article  CAS  Google Scholar 

  4. Mei Y, Tang CY (2018) Recent developments and future perspectives of reverse electrodialysis technology: a review. Desalination. 425:156–174. https://doi.org/10.1016/j.desal.2017.10.021

    Article  CAS  Google Scholar 

  5. Stenina I, Golubenko D, Nikonenko V, Yaroslavtsev A (2020) Selectivity of transport processes in ion-exchange membranes: relationship with the structure and methods for its improvement. Int J Mol Sci 21. https://doi.org/10.3390/ijms21155517

  6. Luo T, Abdu S, Wessling M (2018) Selectivity of ion exchange membranes: a review. J Membr Sci 555:429–454. https://doi.org/10.1016/j.memsci.2018.03.051

    Article  CAS  Google Scholar 

  7. Zhao Y, Zhu J, Ding J, van der Bruggen B, Shen J, Gao C (2018) Electric-pulse layer-by-layer assembled of anion exchange membrane with enhanced monovalent selectivity. J Membr Sci 548:81–90. https://doi.org/10.1016/j.memsci.2017.11.007

    Article  CAS  Google Scholar 

  8. Drioli E, Criscuoli A, Macedonio F (2011) Membrane based desalination: an integrated approach. Iwa Publishing, London

    Google Scholar 

  9. Koseoglu-Imer DY, Karagunduz A (2018) Recent developments of electromembrane desalination processes. Environ Technol Rev 7:199–219. https://doi.org/10.1080/21622515.2018.1483974

    Article  CAS  Google Scholar 

  10. Damtie MM, Woo YC, Kim B, Hailemariam RH, Park K-D, Shon HK, Park C, Choi J-S (2019) Removal of fluoride in membrane-based water and wastewater treatment technologies: performance review. J Environ Manag 251:109524. https://doi.org/10.1016/j.jenvman.2019.109524

    Article  CAS  Google Scholar 

  11. Galama AH, Daubaras G, Burheim OS, Rijnaarts HHM, Post JW (2014) Seawater electrodialysis with preferential removal of divalent ions. J Membr Sci 452:219–228. https://doi.org/10.1016/j.memsci.2013.10.050

    Article  CAS  Google Scholar 

  12. Sata T (2004) Ion exchange membranes: preparation, characterization, modification and application. The Royal Society of Chemistry, Cambridge

    Google Scholar 

  13. Gottesfeld S, Dekel DR, Page M, Bae C, Yan Y, Zelenay P, Kim YS (2018) Anion exchange membrane fuel cells: current status and remaining challenges. J Power Sources 375:170–184. https://doi.org/10.1016/j.jpowsour.2017.08.010

    Article  CAS  Google Scholar 

  14. Khoiruddin K, Ariono D, Subagjo S, Wenten IG (2017) Surface modification of ion-exchange membranes: methods, characteristics, and performance. J Appl Polym Sci 134. https://doi.org/10.1002/app.45540

  15. Wang W, Liu R, Tan M, Sun H, Niu QJ, Xu T, Nikonenko V, Zhang Y (2019) Evaluation of the ideal selectivity and the performance of selectrodialysis by using TFC ion exchange membranes. J Membr Sci 582:236–245. https://doi.org/10.1016/j.memsci.2019.04.007

    Article  CAS  Google Scholar 

  16. Li J, Xu Y, Hu M, Shen J, Gao C, van der Bruggen B (2015) Enhanced conductivity of monovalent cation exchange membranes with chitosan/PANI composite modification. RSC Adv 5:90969–90975. https://doi.org/10.1039/C5RA15231C

    Article  CAS  Google Scholar 

  17. Wang X, Wang M, Jia Y, Wang B (2015) Surface modification of anion exchange membrane by covalent grafting for imparting permselectivity between specific anions. Electrochim Acta 174:1113–1121. https://doi.org/10.1016/j.electacta.2015.06.115

    Article  CAS  Google Scholar 

  18. Golubenko DV, Pourcelly G, Yaroslavtsev AB (2018) Permselectivity and ion-conductivity of grafted cation-exchange membranes based on UV-oxidized polymethylpenten and sulfonated polystyrene. Sep Purif Technol 207:329–335. https://doi.org/10.1016/j.seppur.2018.06.041

    Article  CAS  Google Scholar 

  19. Abdu S, Martí-Calatayud MC, Wong JE, García-Gabaldón M, Wessling M (2014) Layer-by-layer modification of cation exchange membranes controls ion selectivity and water splitting. ACS Appl Mater Interfaces 6:1843–1854. https://doi.org/10.1021/am4048317

    Article  CAS  PubMed  Google Scholar 

  20. Rijnaarts T, Reurink DM, Radmanesh F, de Vos WM, Nijmeijer K (2019) Layer-by-layer coatings on ion exchange membranes: effect of multilayer charge and hydration on monovalent ion selectivities. J Membr Sci 570-571:513–521. https://doi.org/10.1016/j.memsci.2018.10.074

    Article  CAS  Google Scholar 

  21. White N, Misovich M, Yaroshchuk A, Bruening ML (2015) Coating of Nafion membranes with polyelectrolyte multilayers to achieve high monovalent/divalent cation electrodialysis selectivities. ACS Appl Mater Interfaces 7:6620–6628. https://doi.org/10.1021/am508945p

    Article  CAS  PubMed  Google Scholar 

  22. Sata T, Sata T, Yang W (2002) Studies on cation-exchange membranes having permselectivity between cations in electrodialysis. J Membr Sci 206:31–60. https://doi.org/10.1016/S0376-7388(01)00491-4

    Article  CAS  Google Scholar 

  23. Wenten IG, Khoiruddin (2016) Recent developments in heterogeneous ion-exchange membrane: preparation, modification, characterization and performance evaluation. J Eng Sci Technol https://doaj.org/article/27413d3c58c44cda9f6c272d73fa9537

  24. Singh R, Hankins N (2016) Emerging membrane technology for sustainable water treatment. Elsevier, Amsterdam

    Google Scholar 

  25. Ran J, Wu L, He Y, Yang Zh XT (2017) Ion exchange membranes: new developments and applications. J Membr Sci 522:267–291. https://doi.org/10.1016/j.memsci.2016.09.033

    Article  CAS  Google Scholar 

  26. Kononenko N, Nikonenko V, Grande D, Larchet C, Dammak L, Fomenko M, Volfkovich Y (2017) Porous structure of ion exchange membranes investigated by various techniques. Adv Colloid Interf Sci 246:196–216. https://doi.org/10.1016/j.cis.2017.05.007

    Article  CAS  Google Scholar 

  27. Bulejko P, Stranska E, Weinertova K (2017) Properties and structure of heterogeneous ion-exchange membranes after exposure to chemical agents. J Solid State Electrochem 21:111–124. https://doi.org/10.1007/s10008-016-3341-1

    Article  CAS  Google Scholar 

  28. Apel PY, Bobreshova OV, Volkov AV, Volkov VV, Nikonenko VV, Stenina IA, Filippov AN, Yampolskii YP, Yaroslavtsev AB (2019) Prospects of membrane science development. Membr Membr Technol 1:45–63. https://doi.org/10.1134/S2517751619020021

    Article  CAS  Google Scholar 

  29. Vermaas DA, Veerman J, Saakes M, Nijmeijer K (2014) Influence of multivalent ions on renewable energy generation in reverse electrodialysis. Energy Environ Sci 7:1434–1445. https://doi.org/10.1039/C3EE43501F

    Article  CAS  Google Scholar 

  30. Stenina IA, Yaroslavtsev AB (2017) Low- and intermediate-temperature proton-conducting electrolytes. Inorg Mater 53:253–262. https://doi.org/10.1134/S0020168517030104

    Article  CAS  Google Scholar 

  31. Rijnaarts T, Huerta E, van Baak W, Nijmeijer K (2017) Effect of divalent cations on RED performance and cation exchange membrane selection to enhance power densities. Environ Sci Technol 51:13028–13035. https://doi.org/10.1021/acs.est.7b03858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Dzyazko Y, Volfkovich Y (2019) Ionic transport in sol-gel derived organic-inorganic composites. Diffusion Foundations 23:104–137. https://doi.org/10.4028/www.scientific.net/DF.23.104

    Article  CAS  Google Scholar 

  33. Li Y, He G, Wang S, Yu S, Pan F, Wu H, Jiang Z (2013) Recent advances in the fabrication of advanced composite membranes. J Mater Chem A 1:10058. https://doi.org/10.1039/C3TA01652H

    Article  CAS  Google Scholar 

  34. Dzyazko Y, Rozhdestveskaya L, Zmievskii Y, Volfkovich Y, Sosenkin V, Nikolskay N, Vasilyuk S, Myronchuk V, Belyakov V (2015) Heterogeneous membranes modified with nanoparticles of inorganic ion-exchangers for whey demineralization. Mater Today Proceed 2:3864–3873. https://doi.org/10.1016/j.matpr.2015.08.003

    Article  Google Scholar 

  35. Scherer R, Bernardes AM, Forte MMC, Ferreira JZ, Ferreira CA (2001) Preparation and physical characterization of a sulfonated poly(styrene-co-divinylbenzene) and polypyrrole composite membrane. Mater Chem Phys 71:131–136. https://doi.org/10.1016/S0254-0584(00)00515-0

    Article  CAS  Google Scholar 

  36. Malik MS, Qaiser AA, Arif MA (2016) Structural and electrochemical studies of heterogeneous ion exchange membranes based on polyaniline-coated cation exchange resin particles. RSC Adv 6:115046–115054. https://doi.org/10.1039/C6RA24594C

    Article  CAS  Google Scholar 

  37. Yurova PA, Stenina IA, Yaroslavtsev AB (2018) A comparative study of the transport properties of homogeneous and heterogeneous cation-exchange membranes doped with zirconia modified with phosphoric acid groups. Pet Chem 58:1144–1153. https://doi.org/10.1134/S0965544118130108

    Article  CAS  Google Scholar 

  38. Sharafan M, Zabolotsky V (2014) Study of electric mass transfer peculiarities in electromembrane systems by the rotating membrane disk method. Desalination. 343:194–197. https://doi.org/10.1016/j.desal.2013.12.023

    Article  CAS  Google Scholar 

  39. Oh K, Kwon O, Son B, Lee DH, Shanmugam S (2019) Nafion-sulfonated silica composite membrane for proton exchange membrane fuel cells under operating low humidity condition. J Membr Sci 583:103–109. https://doi.org/10.1016/j.memsci.2019.04.031

    Article  CAS  Google Scholar 

  40. Chien H-C, Tsai L-D, Huang C-P, Kang C-Y, Lin J-N, Chang F-C (2013) Sulfonated graphene oxide/Nafion composite membranes for high-performance direct methanol fuel cells. Int J Hydrog Energy 38:13792–13801. https://doi.org/10.1016/j.ijhydene.2013.08.036

    Article  CAS  Google Scholar 

  41. Zhen D, He GB, Xu X, Yan X, Du N, Gong X, Li T, Dai Y, Wu X (2018) Simultaneous enhancement of proton conductivity and methanol resistance of sulfonated poly(phthalazinone ether sulfone ketone)/superacid sulfated zirconia composite membranes for direct methanol fuel cells. J Appl Polym Sci 135. https://doi.org/10.1002/app.46758

  42. Li J, Xu G, Luo X, Xiong J, Liu Z, Cai W (2018) Effect of nano-size of functionalized silica on overall performance of swelling-filling modified Nafion membrane for direct methanol fuel cell application. Appl Energy 213:408–414. https://doi.org/10.1016/j.apenergy.2018.01.052

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The scanning electron microscopy was performed using shared experimental facilities supported by IGIC RAS state assignment.

Availability of data and material (data transparency)

Not applicable.

Funding

This work was supported by the Russian Science Foundation (project #19-13-00339).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. B. Yaroslavtsev.

Ethics declarations

Financial interests

Lubos Novak is the owner of MEGA a.s., at which the tested foil and standard RALEX® CM heterogeneous cation-exchange membranes were produced. They were provided for research free of charge. All other authors declare they have no financial interests.

Code availability (software application or custom code)

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 77 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stenina, I.A., Yurova, P.A., Novak, L. et al. Improvement of ion conductivity and selectivity of heterogeneous membranes by sulfated zirconia modification. Colloid Polym Sci 299, 719–728 (2021). https://doi.org/10.1007/s00396-020-04800-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-020-04800-7

Keywords

Navigation