Skip to main content
Log in

Membranes Based on PTMSP and Hypercrosslinked Polystyrene for Gas Separation and Thermopervaporative Removal of Volatile Organic Compounds from Aqueous Media

  • Published:
Membranes and Membrane Technologies Aims and scope Submit manuscript

Abstract

In order to increase the efficiency of membranes in the processes of gas separation and thermopervaporative isolation of volatile organic compounds from aqueous media, mixed-matrix membranes based on polytrimethylsilylpropine (PTMSP) with an amount of hypercrosslinked polystyrene (HCPS) particles up to 50 wt % have been obtained and experimentally studied for the first time. The industrial sorbent Purolite Macronet™ MN200 was chosen as HCPS due to its high sorption capacity for volatile organic compounds. It has been found that HCPS particles are nonuniformly distributed over the membrane volume and the membranes show a distinct asymmetry when the HCPS content in PTMSP is more than 30 wt %. In the cross section, the membranes represent composite membranes with a thin selective layer (PTMSP) and a porous support (HCPS). It has been established that the permeability coefficients for light gases increase with an increase in the MN200 concentration in the membrane material from 0 to 20 wt %. The introduction of HCPS in an amount of more than 20 wt % in PTMSP leads to an increase in permeability coefficients by 4–7 times, with the selectivity decreasing. The properties of PTMSP membranes with different HCPS fillings were studied during the thermopervaporative separation of benzene–water, toluene–water, and o-xylene–water binary solutions and a multicomponent BTX–water mixture. It has been found that the permeate flux and the separation factor increase with an increase in the HCPS content in PTMSP for all the studied solutions. The maximum values of the separation factor (>900) for all processed solutions were obtained for PTMSP membranes with a HCPS content of 30 wt %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. D. F. Sanders, Z. P. Smith, R. Guo, L. M. Robeson, J. E. McGrath, D. R. Paul, and B. D. Freeman, Polymer 54, 4729 (2013).

    Article  CAS  Google Scholar 

  2. A. Pulyalina, V. Rostovtseva, I. Faykov, M. Tataurov, R. Dubovenko, and S. Shugurov, Molecules 26, 990 (2021).

    Article  CAS  Google Scholar 

  3. V. Volkov, I. Borisov, G. Golubev, V. Vasilevsky, D. Matveev, G. Bondarenko, and A. Volkov, J. Chem. Technol. Biotechnol. 95, 40 (2020).

    Article  CAS  Google Scholar 

  4. M. G. Buonomenna, RSC Adv. 3, 5694 (2013).

  5. Y. Yampolskii, Macromolecules 45, 3298 (2012).

    Article  CAS  Google Scholar 

  6. P. Bernardo, E. Drioli, and G. Golemme, Ind. Eng. Chem. Res. 48, 4638 (2009).

    Article  CAS  Google Scholar 

  7. A. I. Wozniak, E. V. Bermesheva, F. A. Andreyanov, I. L. Borisov, D. P. Zarezin, D. S. Bakhtin, N. N. Gavrilova, I. R. Ilyasov, M. S. Nechaev, and A. F. Asachenko, React. Funct. Polym. 149, 104513 (2020).

    Article  CAS  Google Scholar 

  8. K. Nagai, T. Masuda, T. Nakagawa, B. D. Freeman, and I. Pinnau, Prog. Polym. Sci. 26, 721 (2001).

    Article  CAS  Google Scholar 

  9. G. O. Karpov, I. L. Borisov, A. V. Volkov, E. S. Finkelshtein, and M. V. Bermeshev, Polymers 12, 1282 (2020).

    Article  CAS  Google Scholar 

  10. Y. Yampolskii, L. Starannikova, N. Belov, M. Bermeshev, M. Gringolts, and E. Finkelshtein, J. Membr. Sci. 453, 532 (2014).

    Article  CAS  Google Scholar 

  11. I. L. Borisov, G. S. Golubev, E. V. Patrusheva, and S. P. Sinekoy, Chem. Eng. Trans. 64, 43 (2018).

    Google Scholar 

  12. N. B. McKeown and P. M. Budd, Chem. Soc. Rev. 35, 675 (2006).

    Article  CAS  Google Scholar 

  13. V. Talluri, P. Patakova, T. Moucha, and O. Vopicka, Polymers 11, 1943 (2019).

    Article  CAS  Google Scholar 

  14. T. Masuda and E. Isobe, Macromolecules 18, 841 (1985).

    Article  CAS  Google Scholar 

  15. I. L. Borisov and V. V. Volkov, Sep. Purif. Technol. 146, 33 (2015).

    Article  CAS  Google Scholar 

  16. V. V. Volkov, A. G. Fadeev, V. S. Khotimsky, E. G. Litvinova, Y. A. Selinskaya, J. D. McMillan, and S. S. Kelley, J. Appl. Polym. Sci. 91, 2271 (2004).

    Article  CAS  Google Scholar 

  17. V. Golubev, I. Volkov, A. Borisov, and A. Volkov, Curr. Opin. Chem. Eng. 36, 100788 (2022).

    Article  Google Scholar 

  18. K. D. Dorkenoo and P. H. Pfromm, Macromolecules 33, 3747 (2000).

    Article  CAS  Google Scholar 

  19. K. Nagai and T. Nakagawa, J. Membr. Sci. 105, 261 (1995).

    Article  CAS  Google Scholar 

  20. P. Yu. Apel, O. V. Bobreshova, A. V. Volkov, V. V. Volkov, V. V. Nikonenko, I. A. Stenina, A. N. Filippov, Yu. P. Yampolskii, and A. B. Yaroslavtsev, Membr. Membr. Technol. 1, 45 (2019).

    Article  CAS  Google Scholar 

  21. A. V. Penkova, M. E. Dmitrenko, M. P. Sokolova, B. Chen, T. V. Plisko, D. A. Markelov, and S. S. Ermakov, J. Mater. Sci. 51, 7652 (2016).

    Article  CAS  Google Scholar 

  22. A. Pulyalina, V. Rostovtseva, G. Polotskaya, L. Vinogradova, Z. Zoolshoev, M. Simonova, A. Hairullin, A. Toikka, and Z. Pientka, Polymer 172, 355 (2019).

    Article  CAS  Google Scholar 

  23. D. Q. Vu, W. J. Koros, and S. J. Miller, J. Membr. Sci. 211, 311 (2003).

    Article  CAS  Google Scholar 

  24. S. J. Smith, K. Konstas, C. H. Lau, Y. M. Gozukara, C. D. Easton, R. J. Mulder, B. P. Ladewig, and M. R. Hill, Cryst. Growth Des. 17, 4384 (2017).

    Article  CAS  Google Scholar 

  25. Z. Dai, V. Loining, J. Deng, L. Ansaloni, and L. Deng, Membranes 8, 76 (2018).

    Article  Google Scholar 

  26. N. H. Suhaimi, Y. F. Yeong, C. W. M. Ch’ng, and N. Jusoh, Polymers 11, 2042 (2019).

    Article  CAS  Google Scholar 

  27. A. V. Penkova, A. I. Kuzminova, M. E. Dmitrenko, V. A. Surkova, V. P. Liamin, D. A. Markelov, A. V. Komolkin, D. Y. Poloneeva, A. V. Laptenkova, A. A. Selyutin, A. S. Mazur, A. V. Emeline, S. Thomas, and S. S. Ermakov, Sep. Purif. Technol. 263, 118370 (2021).

    Article  CAS  Google Scholar 

  28. S. J. Smith, R. Hou, K. Konstas, A. Akram, C. H. Lau, and M. R. Hill, Acc. Chem. Res. 53, 1381 (2020).

    Article  CAS  Google Scholar 

  29. C. H. Lau, P. T. Nguyen, M. R. Hill, A. W. Thornton, K. Konstas, C. M. Doherty, R. J. Mulder, L. Bourgeois, A. C. Liu, and D. J. Sprouster, Angew. Chem. Int. Ed. 53, 5322 (2014).

    Article  CAS  Google Scholar 

  30. C. H. Lau, K. Konstas, A. W. Thornton, A. C. Liu, S. Mudie, D. F. Kennedy, S. C. Howard, A. J. Hill, and M. R. Hill, Angew. Chem. 127, 2707 (2015).

    Article  Google Scholar 

  31. A. V. Volkov, D. S. Bakhtin, L. A. Kulikov, M. V. Terenina, G. S. Golubev, G. N. Bondarenko, S. A. Legkov, G. A. Shandryuk, V. V. Volkov, and V. S. Khotimskiy, J. Membr. Sci. 517, 80 (2016).

    Article  CAS  Google Scholar 

  32. D. S. Bakhtin, L. A. Kulikov, S. A. Legkov, V. S. Khotimskiy, I. S. Levin, I. L. Borisov, A. L. Maksimov, V. V. Volkov, E. A. Karakhanov, and A. V. Volkov, J. Membr. Sci. 554, 211 (2018).

    Article  CAS  Google Scholar 

  33. D. Bakhtin, S. Bazhenov, V. Polevaya, E. Grushevenko, S. Makaev, G. Karpacheva, V. Volkov, and A. Volkov, Membranes 10, 419 (2020).

    Article  CAS  Google Scholar 

  34. R. S. Bhavsar, T. Mitra, D. J. Adams, A. I. Cooper, and P. M. Budd, J. Membr. Sci. 564, 878 (2018).

    Article  CAS  Google Scholar 

  35. T. Mitra, R. S. Bhavsar, D. J. Adams, P. M. Budd, and A. I. Cooper, Chem. Comm. 52, 5581 (2016).

    Article  CAS  Google Scholar 

  36. R. Hou, R. O’Loughlin, J. Ackroyd, Q. Liu, C. M. Doherty, H. Wang, M. R. Hill, and S. J. Smith, Ind. Eng. Chem. Res. 59, 13773 (2020).

    Article  CAS  Google Scholar 

  37. C. H. Lau, X. Mulet, K. Konstas, C. M. Doherty, M.‑A. Sani, F. Separovic, M. R. Hill, and C. D. Wood, Angew. Chem. Int. Ed. 55, 1998 (2016).

    Article  CAS  Google Scholar 

  38. G. S. Golubev, I. L. Borisov, E. G. Litvinova, V. S. Khotimsky, D. S. Bakhtin, A. V. Pastukhov, V. A. Davankov, and V. V. Volkov, Pet. Chem. 57, 498 (2017).

    Article  CAS  Google Scholar 

  39. L. Olivieri, S. Ligi, M. G. De Angelis, G. Cucca, and A. Pettinau, Ind. Eng. Chem. Res. 54, 11199 (2015).

    Article  CAS  Google Scholar 

  40. Y. K. Ong and G. M. Shi, N. L. Le, Y. P. Tang, J. Zuo, S. P. Nunes, and T.-S. Chung, Prog. Polym. Sci. 57, 1 (2016).

    Article  CAS  Google Scholar 

  41. W. Ji and S. K. Sikdar, Ind. Eng. Chem. Res. 35, 1124 (1996).

    Article  CAS  Google Scholar 

  42. D. Panek and K. Konieczny, Sep. Purif. Technol. 57, 507 (2007).

    Article  CAS  Google Scholar 

  43. D. Jeong, J. Oh, I. Yum, and Y. Lee, Desalin. Water Treat. 17, 242 (2010).

    Article  CAS  Google Scholar 

  44. Z. Jia and G. Wu, Microporous Mesoporous Mater. 235, 151 (2016).

    Article  CAS  Google Scholar 

  45. S. Yu, Z. Jiang, H. Ding, F. Pan, B. Wang, J. Yang, and X. Cao, J. Membr. Sci. 481, 73 (2015).

    Article  CAS  Google Scholar 

  46. A. V. Penkova, S. F. Acquah, M. P. Sokolova, M. E. Dmitrenko, and A. M. Toikka, J. Membr. Sci. 491, 22 (2015).

    Article  CAS  Google Scholar 

  47. X. Q. Cheng, Z. X. Wang, X. Jiang, T. Li, C. H. Lau, Z. Guo, J. Ma, and L. Shao, Progr. Mater. Sci. 92, 258 (2018).

    Article  CAS  Google Scholar 

  48. V. A. Davankov and M. P. Tsyurupa, React. Polym. 13, 27 (1990).

    Article  CAS  Google Scholar 

  49. C. D. Wood, B. Tan, A. Trewin, F. Su, M. J. Rosseinsky, D. Bradshaw, Y. Sun, L. Zhou, and A. I. Cooper, Adv. Mater. 20, 1916 (2008).

    Article  CAS  Google Scholar 

  50. R. T. Woodward, L. A. Stevens, R. Dawson, M. Vijayaraghavan, T. Hasell, I. P. Silverwood, A. V. Ewing, T. Ratvijitvech, J. D. Exley, and S. Y. Chong, J. Am. Chem. Soc. 136, 9028 (2014).

    Article  CAS  Google Scholar 

  51. M. P. Tsyurupa and V. A. Davankov, React. Funct. Polym. 66, 768 (2006).

    Article  CAS  Google Scholar 

  52. R. Castaldo, G. Gentile, M. Avella, C. Carfagna, and V. Ambrogi, Polymers 9, 651 (2017).

    Article  Google Scholar 

  53. J. Urban, F. Svec, and J. M. Frechet, J. Chromatogr. A 1217, 8212 (2010).

  54. F. V. Hackbarth, V. J. Vilar, G. B. De Souza, S. de Souza, and A. A. U. De Souza, Adsorption 20, 577 (2014).

    CAS  Google Scholar 

  55. http://www.purolite.com (April 10, 2022).

  56. S. M. Shishatskiy, Yu. P. Yampolskii, and K. V. Peinemann, J. Membr. Sci. 112, 275 (1996).

    Article  Google Scholar 

  57. A. K. Coker and E. E. Eds. Ludwig, Ludwig’s Applied Process Design for Chemical And Petrochemical Plants, vol. 1 (Elsevier, Oxford, United Kingdom, 2007).

  58. GESTIS Substance Database. URL: https://gestis-database.dguv.de/ (April 10, 2022).

  59. Pocket Guide to Chemical Hazards: NIOSH, CDC. URL: www.cdc.gov/niosh/npg/default.html (April 10, 2022).

  60. H. Anjum, K. Johari, N. Gnanasundaram, A. Appusamy, and M. Thanabalan, J. Clean. Prod. 221, 3238 (2019).

    Article  Google Scholar 

  61. B. Ghalei, K. Sakurai, Y. Kinoshita, K. Wakimoto, A. P. Isfahani, Q. Song, K. Doitomi, S. Furukawa, H. Hirao, and H. Kusuda, Nature Energy 2, 1 (2017).

    Article  Google Scholar 

  62. K. Jian and P. N. Pintauro, J. Membr. Sci. 135, 41 (1997).

    Article  CAS  Google Scholar 

  63. H. Wu, L. Liu, F. Pan, C. Hu, and Z. Jiang, Sep. Purif. Technol. 51, 352 (2006).

    Article  CAS  Google Scholar 

  64. T. Uragami, H. Yamada, and T. Miyata, J. Membr. Sci. 187, 255 (2001).

    Article  CAS  Google Scholar 

  65. S. Matavos-Aramyan, G. Bagheri, and M. H. Jazebizadeh, Silicon 11, 1725 (2019).

    Article  CAS  Google Scholar 

  66. D. Panek and K. Konieczny, Desalination 222, 280 (2008).

    Article  CAS  Google Scholar 

  67. R. Torkaman, H. Kazemian, and M. Soltanieh, Iran. J. Chem. Chem. Eng. 29, 91 (2010).

    CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The work was carried out using the equipment of the Shared Use Center “Analytical Center for Problems of Deep Oil Refining and Petroleum Chemistry” at the Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences.

Funding

The study was supported the Russian Science Foundation, project no. 20-79-00363.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. S. Golubev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by S. Zatonsky

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golubev, G.S., Sokolov, S.E., Rokhmanka, T.N. et al. Membranes Based on PTMSP and Hypercrosslinked Polystyrene for Gas Separation and Thermopervaporative Removal of Volatile Organic Compounds from Aqueous Media. Membr. Membr. Technol. 4, 404–413 (2022). https://doi.org/10.1134/S2517751622060038

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2517751622060038

Keywords:

Navigation