Skip to main content
Log in

An Electromembrane Process for Cadmium Recovery from Dilute Cadmium Electroplating Dragout Solutions

  • Published:
Membranes and Membrane Technologies Aims and scope Submit manuscript

Abstract

Electromembrane processes have been used to reduce 100–1000 times the carryover of cadmium ions from cadmium electroplating baths into electroplating wastewater. Laboratory experiments and industrial practice have shown that the efficiency of the process depends on the type of cadmium plating electrolyte used: it is maximum for cyanide electrolytes (cadmium recovery efficiency is 99.9%) and minimum for sulfuric acid electrolytes free of ammonium ions (recovery efficiency is 99%). The technology and equipment developed are used in a number of industrial plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. M. Paidar, V. Fateev, and K. Bouzek, Electrochim. Acta 209, 737 (2016).

    Article  CAS  Google Scholar 

  2. G. Chen, Sep. Purif. Technol. 38, 11 (2004).

    Article  CAS  Google Scholar 

  3. H. Steathamann, A. Grabowski, and B. Eigenberger, Desalination 199, 1 (2006).

    Article  CAS  Google Scholar 

  4. V. K. Varentsov and I. A. Bataev, Pet. Chem. 57, 961 (2017).

    Article  CAS  Google Scholar 

  5. E. A. Zhelonkina, S. V. Shishkina, I. Yu. Mikhailova, and B. A. Ananchenko, Pet. Chem. 57, 947 (2017).

    Article  CAS  Google Scholar 

  6. A. G. Pervov, A. P. Andrianov, T. P. Gorbunova, and A. S. Bagdasaryan, Pet. Chem. 55, 871 (2015).

    Article  CAS  Google Scholar 

  7. S. S. Kruglikov, Gal’vanotekh. Obrab. Poverkhn. 26 (2), 41 (2018).

    Google Scholar 

  8. S. S. Kruglikov and E. S. Kruglikova, in Proceedings of National Association for Surface Finishing Annual Conference and Trade Show SUR/FIN 2011, 13–15 June 2011, Rosemont, IL, USA, p. 837.

  9. S. S. Kruglikov, V. Kolesnikov, V. Brodski, et al., Galvanotechnik 109, 246 (2018).

    Google Scholar 

  10. S. S. Kruglikov, Pet. Chem. 56, 976 (2016).

    Article  CAS  Google Scholar 

  11. S. S. Kruglikov, N. S. Kolotovkina, and T. Ladygina, in Proceedings of National Association for Surface Finishing Annual Technical Conference SUR/FIN 2009, 16–17 June 2009, Louisville, KY, USA), p. 28.

  12. S. S. Kruglikov, V. A. Kolesnikov, and S. O. Varaksin, in Proceedings of National Association for Surface Finishing Annual Conference and Trade Show SUR/FIN 2010, 14–17 June 2010, Grand Rapids, MI, USA, p. 278.

  13. S. S. Kruglikov, in Proceedings of National Association for Surface Finishing Annual Technical Conference SUR/FIN 2006, 18–21 September 2006, Milwaukee, WI, USA, p. 432.

  14. L. Marder, A. M. Bernardes, and J. Z. Ferreira, Sep. Purif. Technol. 37, 247 (2004).

    Article  CAS  Google Scholar 

  15. F. M. Allioux, P. Kapruwan, N. Milne, et al., Sep. Purif. Technol. 194, 26 (2018).

    Article  CAS  Google Scholar 

  16. L. Bulgariu and D. Bulgariu, Sep. Purif. Technol. 118, 209 (2013).

    Article  CAS  Google Scholar 

  17. J. Landaburu Aguirre, E. Pongracz, and R. L. Keiski, Sep. Purif. Technol. 81, 41 (2011).

    Article  CAS  Google Scholar 

  18. S. Vasudevan and J. Lakshmi, Sep. Purif. Technol. 80, 643 (2011).

    Article  CAS  Google Scholar 

  19. V. Singh, S. Panley, S. K. Singh, and R. Sanghi, Sep. Purif. Technol. 67, 251 (2009).

    Article  CAS  Google Scholar 

  20. P. Bhunia, S. Chatterjee, P. Rudra, and S. De, Sep. Purif. Technol. 193, 202 (2018).

    Article  CAS  Google Scholar 

  21. S. Cay, A. Uyanik, and A. Ozasik, Sep. Purif. Technol. 38, 273 (2004).

    Article  CAS  Google Scholar 

  22. Y. Zhai, X. Wei, G. Zeng, et al., Sep. Purif. Technol. 38, 191 (2004).

    Article  CAS  Google Scholar 

  23. B. R. Reddy, D. N. Priya, and K. H. Park, Sep. Purif. Technol. 50, 161 (2006).

    Article  CAS  Google Scholar 

  24. I. A. Abbasn, A. M. Al-Amer, T. Laoui, and M. A. Atieh, Sep. Purif. Technol. 157, 141 (2016).

    Article  CAS  Google Scholar 

  25. F. E. Okieimen, C. E. Sokbaike, and J. E. Ebhoaye, Sep. Purif. Technol. 44, 85 (2005).

    Article  CAS  Google Scholar 

  26. M. A. Shenashen, E. A. Elshehi, S. A. El-Safty, and M. Khairy, Sep. Purif. Technol. 116, 73 (2013).

    Article  CAS  Google Scholar 

  27. A. Denisli, B. Garipcan, A. Karabakanet al., Sep. Purif. Technol. 30, 3 (2003).

    Article  Google Scholar 

  28. E. Salehi, S. S. Madaleni, and F. Heidari, Sep. Purif. Technol. 94, 18 (2012).

    Google Scholar 

  29. N. Fiol, I. V. Escusa, M. Martinez, et al., Sep. Purif. Technol. 50, 132 (2006).

    Article  CAS  Google Scholar 

  30. O. Charles, S. Al Hamouz, M. Estatie, and T. A. Saleh, Sep. Purif. Technol. 177, 101 (2017).

    Article  CAS  Google Scholar 

  31. M. K. Jiha, D. Gupta, P. K. Choubey, et al., Sep. Purif. Technol. 122, 119 (2014).

    Article  CAS  Google Scholar 

  32. S. Mauchauffee, E. Meux, and M. Schneider, Sep. Purif. Technol. 62, 394 (2008).

    Article  CAS  Google Scholar 

  33. M. Gharabaghi, M. Irannajad, and A. R. Azadmehr, Sep. Purif. Technol. 86, 9 (2012).

    Article  CAS  Google Scholar 

  34. H. Mahandra, R. Singh, and B. Gupta, Sep. Purif. Technol. 177, 281 (2017).

    Article  CAS  Google Scholar 

  35. R. K. Sharma, A. Puri, Y. Monga, and A. Adholeya, Sep. Purif. Technol. 127, 121 (2014).

    Article  CAS  Google Scholar 

  36. J. E. D. V. Segundo, G. R. Salazar-Banda, A. C. O. Feitoza, et al., Sep. Purif. Technol. 88, 107 (2012).

    Article  CAS  Google Scholar 

  37. M. R. Yaftian, A. A. Zamani, M. Parinejad, and E. Shams, Sep. Purif. Technol. 42, 175 (2005).

    Article  CAS  Google Scholar 

  38. L. Svecova, M. Spanelova, M. Kubal, and E. Guibal, Sep. Purif. Technol. 52, 142 (2006).

    Article  CAS  Google Scholar 

  39. S. V. Shishkina, E. A. Zhelonkina, and T. V. Kononova, Pet. Chem. 53, 494 (2013).

    Article  CAS  Google Scholar 

  40. N. E. Nekrasova, E. S. Kruglikova, A. V. Telezhkina, et al., Gal’vanotekh. Obrab. Poverkhn. 25 (4), 4 (2017).

    Google Scholar 

  41. O. S. Zhendareva and Z. S. Mukhina, Analysis of Electroplating Baths (Khimiya, Moscow, 1970) [in Russian].

    Google Scholar 

Download references

FUNDING

The work was supported by the President of the Russian Federation, scholarship SP-4783.29018.1, and performed in accordance with the Basic part of the State Task.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. S. Kruglikov.

Additional information

Translated by S. Zatonsky

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kruglikov, S.S., Nekrasova, N.E., Kuznetsov, V.V. et al. An Electromembrane Process for Cadmium Recovery from Dilute Cadmium Electroplating Dragout Solutions. Membr. Membr. Technol. 1, 120–126 (2019). https://doi.org/10.1134/S2517751619020057

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2517751619020057

Keywords:

Navigation