Skip to main content
Log in

Regeneration of Chromium Electroplating Electrolytes by the Application of Electromembrane Processes

  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

The use of the electromembrane method for the purification of chromium plating electrolytes from cationic impurities (iron, copper, etc.) by three approaches are described. The first variant is based on the removal of these ions during their migration from the solution to be purified into a catholyte through a cationexchange membrane. The second variant is a transfer of chromate anions from a contaminated solution into the anolyte through an anion-exchange membrane. In the third method for the recuperation of chromic acid, accumulated in a recovery bath, it is proposed to use the immersed electrochemical module, combining the processes of concentration and purification from impurities, instead of evaporation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Solodkova, L.N. and Kudryavtsev, V.N., Elektroliticheskoe khromirovanie (Electrolytic Chromium Plating), Moscow: Ross. Khim.-Tekhnol. Univ. im. D. I. Mendeleeva, 2013, 2nd ed.

    Google Scholar 

  2. Gal’vanicheskie pokrytiya v mashinostroenii. Spravochnik (Electroplating in Mechanical Engineering: A Handbook), Shluger, M.A. and Tok, L.D., Eds., Moscow: Mashinostroenie, 1985, vol. 2.

  3. Gibkie avtomatizirovannye gal’vanicheskie linii. Spravochnik (Flexible Automated Galvanic Lines: A Handbook), Moscow: Mashinostroenie, 1989.

  4. Nabil, Z., Chromium plating, Products Finishing Directory' 91, 1991, p. 170.

    Google Scholar 

  5. Vinogradov, S.S., Ekologicheski bezopasnoe gal’vanicheskoe proizvodstvo (Environmentally Safe Galvanic Production), Moscow: Globus, 2002.

    Google Scholar 

  6. Solodkova, L.N., Vashchenko, S.V., Lyakhov, B.V., Bardyshev, I.I., Tsivadze, A.Y., Chernyshev, V.V., and Shiryaev, A.A., Silver deposition from its nitrate solutions by hydrogenated palladium, Theor. Found. Chem. Eng., 2017, vol. 51, no. 3, p. 262.

    Article  CAS  Google Scholar 

  7. Kolesnikov, V.A., Il’in, V.I., Brodskiy, V.A., and Kolesnikov, A.V., Electroflotation during wastewater treatment and extraction of valuable compounds from liquid technogenic waste: A review, Theor. Found. Chem. Eng., 2017, vol. 51, no. 4, p. 369.

    Article  CAS  Google Scholar 

  8. Kondratyeva, E.S., Gubin, A.F., and Kolesnikov, V.A., Study of the extraction of zinc(II) ions from ammonia–sulfate solutions, Theor. Found. Chem. Eng., 2016, vol. 50, no. 1, p. 83.

    Article  CAS  Google Scholar 

  9. Myasnikov, S.K., Tikhonov, A.Yu., Chipryakova, A.P., and Kulov, N.N., Removal of heavy metal ions from water by a combined sorption–crystallization process using activated clays, Theor. Found. Chem. Eng., 2016, vol. 50, no. 4, p. 366.

    Article  CAS  Google Scholar 

  10. Mal’tsev, G.I., Rodionov, B.K., and Vershinin, S.V., Kinetic characteristics of concentration and isolation of metal impurities from solutions and industrial wastewater by ion flotation, Theor. Found. Chem. Eng., 2010, vol. 44, no. 6, p. 853.

    Article  CAS  Google Scholar 

  11. Kolesnikov, V.A., Desyatov, A.V., Milyutina, A.D., and Kolesnikov, A.V., Increasing the efficiency of the electroflotation recovery of finely dispersed carbon material in the presence of surfactants from liquid technogenic waste, Theor. Found. Chem. Eng., 2018, vol. 52, no. 1, pp. 72–78.

    Article  Google Scholar 

  12. Wang, W., Li, M., and Zeng, Q., Adsorption of chromium( VI) by strong alkaline anion exchange fiber in a fixed-bed column: Experiments and models fitting and evaluating, Sep. Purif. Technol., 2015, vol. 149, pp. 16–23. https://doi.org/10.1016/j.seppur.2015.05.022

    Article  CAS  Google Scholar 

  13. Zhang Z., Liba D., Alvarado L., and Chen, A., Separation and recovery of Cr(III) and Cr(VI) using electrode ionization as an efficient approach, Sep. Purif. Technol., 2014, vol. 137, pp. 86–93. https://doi.org/10.1016/j.seppur.2014.09.030

    Article  CAS  Google Scholar 

  14. Abbassi-Garravand, R. and Mulligan, C.N., Using micellar enhanced ultrafiltration and reduction techniques for removal of Cr(VI) and Cr(III) from water, Sep. Purif. Technol., 2014, vol. 132, pp. 505–512. https://doi.org/10.1016/j.seppur.2014.06.010

    Article  CAS  Google Scholar 

  15. Kameda, T., Kondo, E., and Yoshioka, T., Preparation of Mg–Al-layered double hydroxide doped with Fe2+ and its application to Cr(VI) removal, Sep. Purif. Technol., 2014, vol. 122, pp. 12–16. https://doi.org/10.1016/j.seppur.2013.10.033

    Article  CAS  Google Scholar 

  16. Golder, A.A., Chanda, A.K., Samanta, A.N., and Ray, S., Removal of hexavalent chromium by electrochemical reduction–precipitation: Investigation of process performance and reaction stoichiometry, Sep. Purif. Technol., 2011, vol. 76, pp. 345–350. https://doi.org/10.1016/j.seppur.2010.11.002

    Article  CAS  Google Scholar 

  17. Li, L., Zhang, J., Li, Y., and Yang, C., Removal of Cr(VI) with a spiral wound chitosan nanofiber membrane module via dead-end filtration, Sep. Purif. Technol., 2017, vol. 544, pp. 333–341. https://doi.org/10.1016/j.memsci.2017.09.045

    CAS  Google Scholar 

  18. Gao, P., Chen, X., Shen, F., and Chen, G., Removal of Cr(VI) from wastewater by combined electrocoagulation- electroflotation without a filter, Sep. Purif. Technol., 2005, vol. 43, no. 2, pp. 117–123. https://doi.org/10.1016/j.seppur.2004.10.008

    Article  CAS  Google Scholar 

  19. Zongo, I., Leclerc, J.-P., Maïga, H.A., Wéthé, J., and Lapicque, F., Removal of hexavalent chromium from industrial wastewater by electrocoagulation: A comprehensive comparison of aluminium and iron electrodes, Sep. Purif. Technol., 2009, vol. 66, no. 1, pp. 159–166. https://doi.org/10.1016/j.seppur.2008.11.012

    Article  CAS  Google Scholar 

  20. Lakshmipathiraj, P., Raju, G.B., Basariya, M.R., Parvathy, S., and Prabhakar, S., Removal of Cr(VI) by electrochemical reduction, Sep. Purif. Technol., 2008, vol. 60, no. 1, pp. 96–102. https://doi.org/10.1016/j.seppur.2007.07.053

    Article  CAS  Google Scholar 

  21. Xing, Y., Chen, X., and Wang, D., Variable effects on the performance of continuous electrodeionization for the removal of Cr(VI) from wastewater, Sep. Purif. Technol., 2009, vol. 68, no. 3, p. 357.

    Article  CAS  Google Scholar 

  22. Xing, Y., Chen, X., Yao, P., and Wang, D., Continuous electrodeionization for removal and recovery of Cr(VI) from wastewater, Sep. Purif. Technol., 2009, vol. 67, no. 2, pp. 123–126. https://doi.org/10.1016/j.seppur.2009.03.029

    Article  CAS  Google Scholar 

  23. Alvarado, L., Torres, I.R., and Chen, A., Integration of ion exchange and electrodeionization as a new approach for the continuous treatment of hexavalent chromium wastewater, Sep. Purif. Technol., 2013, vol. 105, pp. 55–62. https://doi.org/10.1016/j.seppur.2012.12.007

    Article  CAS  Google Scholar 

  24. Pulkka, S., Martikainen, M., Bhatnagar, A., and Sillanpää, M., Electrochemical methods for the removal of anionic contaminants from water–A review, Sep. Purif. Technol., 2014, vol. 132, pp. 252–271. https://doi.org/10.1016/j.seppur.2014.05.021

    Article  CAS  Google Scholar 

  25. Paidar, M., Fateev, V., and Bouzek, K., Membrane electrolysis–history, current status and perspective, Electrochim. Acta, 2016, vol. 209, pp. 737–756. https://doi.org/10.1016/j.electacta.2016.05.209

    Article  CAS  Google Scholar 

  26. Pervov, A.G., Andrianov, A.G., Gorbunova, T.P., and Bagdasaryan, A.S., Membrane technologies in the solution of environmental problems, Pet. Chem., 2015, vol. 55, no. 10, p. 889.

    Google Scholar 

  27. Marti-Calatayud, M.S., Garcia-Cabaldon, M., and Perz-Herranz, V., Ion transport through homogeneous and heterogeneous ion-exchange membranes, J. Membr. Sci., 2013, vol. 446, p. 45.

    Google Scholar 

  28. Ruiz, B., Sistat, P., Pourcelly, G., and Huguet, P., Electromembrane processes with pulsed electric field, Desalination, 2006, vol. 199, nos. 1–3, p. 62.

    Article  CAS  Google Scholar 

  29. Strathmann, H., Grabowski, A., and Eigenberger, B., Electromembrane processes, efficient and versatile tools in sustainable industrial development, Desalination, 2006, vol. 199, nos. 1–3, p. 1.

    Article  CAS  Google Scholar 

  30. Vasil'eva, V.I., Grigorchuk, O.V., and Shaposhnik, V.A., Limiting current density in electromembrane systems with weak electrolytes, Desalination, 2006, vol. 199, nos. 1–3, p. 401.

    Article  CAS  Google Scholar 

  31. Marti-Calatayud, M.C., Garcia-Gabaldon, M., Perez-Herranz, V., and Ortega, E., Determination of transport properties of Ni(II) through Nafion cationexchange membrane in chromic acid solutions, J. Membr. Sci., 2011, vol. 179, p. 449.

    Article  CAS  Google Scholar 

  32. Shishkina, S.V., Shelonkina, S.V., and Kononova, B.V., Effect of chromium compounds on the properties of ionexchange membranes, Pet. Chem., 2013, vol. 53, no. 7, p. 494.

    Article  CAS  Google Scholar 

  33. Nekrasova, N.E., Kruglikova, E.S., Telezhkina, A.V., Kapustin, E.S., and Kravchenko, D.V., The use of Ti/IrO2/SnO2/PbO2 anode in cadmium passivating solution, Gal’vanotekh. Obrab. Poverkhn., 2017, vol. 25, no. 4, pp. 4–9.

    Google Scholar 

  34. Kruglikov, S.S. and Nekrasova, N.E., Galvanic section without purification facilities, Prakt. Protivokorroz. Zashch., 2017, no. 4 (86), pp. 54–65.

    Google Scholar 

  35. Kruglikov, S.S., Reduction of water consumption and quantities of solid waste by means of immersed electrochemical modules, Proc. AESF SUR/FIN’98 Annual International Technical Conference (Minneapolis, 1998), Orlando, Fla.: American Electroplaters and Surface Finishers Society, 1998, p. 733.

    Google Scholar 

  36. Kruglikov, S.S., Application of electromembrane processes in chromium electroplating technology, Pet. Chem., 2015, vol. 56, no. 10, p. 976.

    Google Scholar 

  37. Kruglikov, S.S. and Kolotovkina, N.S., The use of immersed electrochemical modules for the removal of iron and other cationic impurities from chromium plating solutions, Gal’vanotekh. Obrab. Poverkhn., 2013, vol. 21, no. 3, pp. 63–67.

    Google Scholar 

  38. Kolesnikov, V.A., Kruglikov, S.S., and Varaksin, S.O., Electrochemical reagent-free treatment of waste water, Proc. National Association for Surface Finishing Annual Conference and Trade Show 2010 (SUR/FIN 2010) (Grand Rapids, Mich., 2010), Washington, DC: National Association for Surface Finishing, 2010, vol. 1, pp. 278–282.

    CAS  Google Scholar 

  39. Kruglikov, S., Kolotovkina, N., and Ladygina, T., Removal of iron and other metal impurities from chromium plating solutions, Proc. National Association for Surface Finishing Annual Technical Conference 2009 (SUR/FIN 2009) (Louisville, Ky., 2009), Washington, DC: National Association for Surface Finishing, 2009, pp. 28–34.

    Google Scholar 

  40. Kruglikov, S.S., Kolotovkina, N.S., Kazakova, K.V., Kruglikova, E.S., and Romanenkova, A.A., The use of three-chamber electrolytic cells for the recuperation of chromic acid, Gal’vanotekh. Obrab. Poverkhn., 2008, vol. 16, no. 1, pp. 34–38.

    Google Scholar 

  41. Kruglikov, S.S., Immersed electrochemical modules (IEM): Major areas of application, Gal’vanotekh. Obrab. Poverkhn., 2007, vol. 15, no. 3, pp. 62–65.

    Google Scholar 

  42. Kruglikov, S.S., Nekrasova, N.E., Nevmyatullina, Kh.A., Kharin, P.A., and Kruglikova, E.S., The use of twochamber immersed electrochemical modules (IEM) to improve the stability of lead anodes in aggressive media, Gal’vanotekh. Obrab. Poverkhn., 2016, vol. 24, no. 1, pp. 22–25.

    Google Scholar 

  43. Kurushina, N.V. and Kleshchevnikova, I.V., Introduction of new technologies for the neutralization of waste effluents, Ekol. Proizvod., 2006, no. 5, p. 28.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. S. Kruglikov.

Additional information

Original Russian Text © S.S. Kruglikov, V.A. Kolesnikov, N.E. Nekrasova, A.F. Gubin, 2018, published in Teoreticheskie Osnovy Khimicheskoi Tekhnologii, 2018, Vol. 52, No. 5, pp. 519–523.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kruglikov, S.S., Kolesnikov, V.A., Nekrasova, N.E. et al. Regeneration of Chromium Electroplating Electrolytes by the Application of Electromembrane Processes. Theor Found Chem Eng 52, 800–805 (2018). https://doi.org/10.1134/S0040579518050366

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040579518050366

Keywords

Navigation