Skip to main content
Log in

The Battery of Analytical Techniques Necessary for the Effective Characterization of Solutions of Temperature-Sensitive Polymers

  • REVIEW
  • Published:
Reviews and Advances in Chemistry Aims and scope Submit manuscript

Abstract

This review aims to highlight the most effective ways of studying temperature-sensitive polymer solutions, which exhibit phase separation phenomena caused by variations in temperature. As a result of phase separation, temperature-sensitive polymer systems can form well-defined self-assembled nanostructures with a number of different practical application such as in drug and gene delivery, tissue engineering, etc. In order to establish the required properties for applications, a rigorous characterization of the phase separation phenomenon is essential. This review describes the application of different spectroscopic and calorimetric methods, including NMR, DLS, SAXS, IR, Raman spectroscopy and DSC, for this purpose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Roy, D., Brooks, W.L.A., and Sumerlin, B.S., Chem. Soc. Rev., 2013, vol. 42, no. 17, p. 7214.

    Article  CAS  PubMed  Google Scholar 

  2. Roy, D., Cambre, J.N., and Sumerlin, B.S., Prog. Polym. Sci., 2010, vol. 35, nos. 1–2, p. 278.

    Article  CAS  Google Scholar 

  3. Aseyev, V., Tenhu, H., and Winnik, F.M., Adv. Polym. Sci., 2011, vol. 242, p. 29.

    Article  CAS  Google Scholar 

  4. Ward, M.A. and Georgiou, T.K., Polymers, 2011, vol. 3, no. 3, p. 1215.

    Article  CAS  Google Scholar 

  5. Aseyev, V.O., Tenhu, H., and Winnik, F.M., Adv. Polym. Sci., 2006, vol. 196, p. 1.

    Article  CAS  Google Scholar 

  6. Filippov, S.K., Verbraeken, B., Konarev, P.V., Svergun, D.I., Angelov, B., Vishnevetskaya, N.S., Papadakis, C.M., Rogers, S., Radulescu, A., Courtin, T., Martins, J.C., Starovoytova, L., Hruby, M., Stepanek, P., Kravchenko, V.S., Potemkin, I.I., and Hoogenboom, R., J. Phys. Chem. Lett., 2017, vol. 8, no. 16, p. 3800.

    Article  CAS  PubMed  Google Scholar 

  7. Bogomolova, A., Filippov, S.K., and Starovoytova, L., J. Phys. Chem. B, 2014, vol. 118, no. 18, p. 4940.

    Article  CAS  PubMed  Google Scholar 

  8. Heskins, M. and Guillet, J.E., J. Macromol. Sci., Part A: Pure Appl.Chem., 1968, vol. 2, no. 8, p. 1441.

    Article  CAS  Google Scholar 

  9. Maeda, Y., Nakamura, T., and Ikeda, I., Macromolecules, 2002, vol. 35, no. 1, p. 217.

    Article  CAS  Google Scholar 

  10. Mano, J.F., Adv. Eng. Mater., 2008, vol. 10, no. 6, p. 515.

    Article  CAS  Google Scholar 

  11. Narang, P. and Venkatesu, P., Polymer, 2017, vol. 131, p. 224.

    Article  CAS  Google Scholar 

  12. Bhattacharjee, S., J. Controlled Release, 2016, vol. 235, p. 337.

    Article  CAS  Google Scholar 

  13. Hanyková, L., Labuta, J., and Spěváček, J., Polymer, 2006, vol. 47, no. 17, p. 6107.

    Article  Google Scholar 

  14. Velychkivska, N., Starovoytova, L., Březina, V., Hanyková, L., Hill, J.P., and Labuta, J., ACS Omega, 2018, vol. 3, no. 9, p. 11865.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Labuta, J., Hill, J.P., Hanyková, L., Ishihara, S., and Ariga, K., J. Nanosci. Nanotechnol., 2010, vol. 10, no. 12, p. 8408.

    Article  CAS  PubMed  Google Scholar 

  16. Velychkivska, N., Bogomolova, A., Filippov, S.K., Starovoytova, L., and Labuta, J., Colloid Polym. Sci., 2017, vol. 295, no. 8, p. 1419.

  17. Sturtevant, J.M., Annu. Rev. Biophys. Bioeng., 1974, vol. 3, p. 35.

    Article  CAS  PubMed  Google Scholar 

  18. Sugar, I.P., J. Phys. Chem., 1987, vol. 91, no. 1, p. 95.

    Article  CAS  Google Scholar 

  19. Hanyková, L., Krakovský, I., Šestáková, E., Šťastná, J., and Labuta, J., Polymers, 2020, vol. 12, no. 2502, p. 1.

    Article  Google Scholar 

  20. Stankowski, S. and Gruenewald, B., Biophys. Chem., 1980, vol. 12, no. 2, p. 167.

    Article  CAS  PubMed  Google Scholar 

  21. Carr, H.Y. and Purcell, E.M., Phys. Rev., 1954, vol. 94, no. 3, p. 630.

    Article  CAS  Google Scholar 

  22. Hahn, E.L., Phys. Rev., 1950, vol. 80, no. 4, p. 580.

    Article  Google Scholar 

  23. Meiboom, S. and Gill, D., Rev. Sci. Instrum., 1958, vol. 29, no. 8, p. 688.

    Article  CAS  Google Scholar 

  24. Spěváček, J. and Hanyková, L., Macromol. Symp., 2003, vol. 203, no. 1, p. 229.

    Article  Google Scholar 

  25. Spěváček, J., Hanyková, L., and Labuta, J., Macromolecules, 2011, vol. 44, no. 7, p. 2149.

    Article  Google Scholar 

  26. Spěváček, J. and Hanyková, L., Macromolecules, 2005, vol. 38, no. 22, p. 9187.

    Article  Google Scholar 

  27. Starovoytova, L. and Spěváček, J., Polymer, 2006, vol. 47, no. 21, p. 7329.

    Article  CAS  Google Scholar 

  28. Starovoytova, L., St’astna, J., Sturcova, A., Konefal, R., Dybal, J., Velychkivska, N., Radecki, M., and Hanykova, L., Polymers, 2015, vol. 7, no. 12, p. 2572.

    Article  CAS  Google Scholar 

  29. Hofmann, C. and Schönhoff, M., Colloid Polym. Sci., 2009, vol. 287, no. 12, p. 1369.

    Article  CAS  Google Scholar 

  30. Günther, H., Hemminger, W.F., and Flammersheim, H.-J., Differential Scanning Calorimetry, Berlin: Springer, 2003, 2nd ed.

    Google Scholar 

  31. Gedde, U.W., Polymer Physics, Dordrecht: Springer, 1999.

    Book  Google Scholar 

  32. Schäfer-Soenen, H., Moerkerke, R., Berghmans, H., Koningsveld, R., Dušek, K., and Šolc, K., Macromolecules, 1997, vol. 30, no. 3, p. 410.

    Article  Google Scholar 

  33. Van Durme, K., van Assche, G., and van Mele, B., Macromolecules, 2004, vol. 37, no. 25, p. 9596.

    Article  CAS  Google Scholar 

  34. Ding, Y., Ye, X., and Zhang, G., Macromolecules, 2005, vol. 38, no. 3, p. 904.

    Article  CAS  Google Scholar 

  35. Van Durme, K., Rahier, H., and van Mele, B., Macromolecules, 2005, vol. 38, no. 24, p. 10155.

    Article  CAS  Google Scholar 

  36. Cho, J.Y., Heuzey, M.C., Begin, A., and Carreau, P.J., Biomacromolecules, 2005, vol. 6, no. 6, p. 3267.

    Article  CAS  PubMed  Google Scholar 

  37. Hunter, A.C. and Moghimi, S.M., Drug Discovery Today, 2002, vol. 7, no. 19, p. 998.

    Article  CAS  PubMed  Google Scholar 

  38. Grinberg, V.Y., Burova, T.V., Grinberg, N.V., Tikhonov, V.E., Dubovik, A.S., Moskalets, A.P., and Khokhlov, A.R., Carbohydr. Polym., 2020, vol. 229, 115558.

    Article  CAS  PubMed  Google Scholar 

  39. Okada, Y. and Tanaka, F., Macromolecules, 2005, vol. 38, no. 10, p. 4465.

    Article  CAS  Google Scholar 

  40. Meeussen, F., Nies, E., Berghmans, H., Verbrugghe, S., Goethals, E., and du Prez, F.E., Polymer, 2000, vol. 41, no. 24, p. 8597.

    Article  CAS  Google Scholar 

  41. Van Durme, K., Verbrugghe, S., du Prez, F.E., and van Mele, B., Macromolecules, 2004, vol. 37, no. 3, p. 1054.

    Article  CAS  Google Scholar 

  42. Afroze, F., Nies, E., and Berghmans, H., J. Mol. Struct., 2000, vol. 554, no. 1, p. 55.

    Article  CAS  Google Scholar 

  43. Moerkerke, R., Meeussen, F., Koningsveld, R., and Berghmans, H., Macromolecules, 1998, vol. 31, no. 7, p. 2223.

    Article  CAS  Google Scholar 

  44. Larkin, P.J., Infrared and Raman Spectroscopy: Principles and Spectral Interpretation, New York: Elsevier, 2018.

    Google Scholar 

  45. Kauffmann, T.H., Kokanyan, N., and Fontana, M.D., J. Raman Spectrosc., 2019, vol. 50, no. 3, p. 418.

    Article  CAS  Google Scholar 

  46. Colthup, N.B., Daly, L.H., and Wiberley, S.E., Introduction to Infrared and Raman Spectroscopy, New York: Elsevier, 1990, 3rd ed.

    Google Scholar 

  47. Maeda, Y., Langmuir, 2001, vol. 17, no. 5, p. 1737.

    Article  CAS  Google Scholar 

  48. Sun, B., Lin, Y., Wu, P., and Siesler, H.W., Macromolecules, 2008, vol. 41, no. 4, p. 1512.

    Article  CAS  Google Scholar 

  49. Maeda, Y., Yamamoto, H., and Ikeda, I., Langmuir, 2004, vol. 20, no. 17, p. 7339.

    Article  CAS  PubMed  Google Scholar 

  50. Pica, A. and Graziano, G., Phys. Chem. Chem. Phys., 2016, vol. 18, no. 36, p. 25601.

    Article  CAS  PubMed  Google Scholar 

  51. Maeda, Y., Yamamoto, H., and Ikeda, I., Macromol. Rapid Commun., 2004, vol. 25, no. 14, p. 720.

    Article  CAS  Google Scholar 

  52. Yamauchi, H. and Maeda, Y., J. Phys. Chem. B, 2007, vol. 111, no. 45, p. 12964.

    Article  CAS  PubMed  Google Scholar 

  53. Fujishige, S., Kubota, K., and Ando, I., J. Phys. Chem., 1989, vol. 93, no. 8, p. 3311.

    Article  CAS  Google Scholar 

  54. Tanaka, F., Koga, T., Kojima, H., and Winnik, F.M., Chin. J. Polym. Sci., 2011, vol. 29, no. 1, p. 13.

    Article  CAS  Google Scholar 

  55. Zhang, G.Wu., J. Am. Chem. Soc., 2001, vol. 123, no. 7, p. 1376.

    Article  CAS  Google Scholar 

  56. Aseyev, V., Hietala, S., Laukkanen, A., Nuopponen, M., Confortini, O., du Prez, F.E., and Tenhu, H., Polymer, 2005, vol. 46, no. 18, p. 7118.

    Article  CAS  Google Scholar 

  57. Filippov, S.K., Bogomolova, A., Kaberov, L., Velychkivska, N., Starovoytova, L., Cernochova, Z., Rogers, S.E., Lau, W.M., Khutoryanskiy, V.V., and Cook, M.T., Langmuir, 2016, vol. 32, no. 21, p. 5314.

    Article  CAS  PubMed  Google Scholar 

  58. Schnablegger, H. and Singh, Y., A Practical Guide to SAXS: Getting Acquainted with the Principles, Graz: Anton Paar, 2011.

    Google Scholar 

  59. Kohlbrecher, J., User Guide for the SASfit Software Package SASfit: A Program for Fitting Simple Structural Models to Small Angle Scattering Data, Villigen: Paul Scherrer Inst., 2017.

    Google Scholar 

  60. Spěváček, J., Dybal, J., Starovoytova, L., Zhigunov, A., and Sedláková, Z., Soft Matter, 2012, vol. 8, no. 12, p. 6110.

    Article  Google Scholar 

  61. Lyngsø, J., Al-Manasir, N., Behrens, M. A., Zhu, K., Kjøniksen, A.-L., Nyström, B., and Pedersen, J.S., Macromolecules, 2015, vol. 48, no. 7, p. 2235.

    Article  Google Scholar 

  62. Janisova, L., Gruzinov, A., Zaborova, O.V., Velychkivska, N., Vaněk, O., Chytil, P., Etrych, T., Janoušková, O., Zhang, X., Blanchet, C., Papadakis, C.M., Svergun, D.I., and Filippov, S.K., Pharmaceutics, 2020, vol. 12, no. 106, p. 1.

    Article  Google Scholar 

  63. Bogomolova, A., Filippov, S.K., Starovoytova, L., Angelov, B., Konarev, P., Sedlacek, O., Hruby, M., and Stepanek, P., J. Phys. Chem. B, 2014, vol. 118, no. 18, p. 4940.

    Article  CAS  PubMed  Google Scholar 

  64. Kitazawa, Y., Ueki, T., McIntosh, L.D., Tamura, S., Niitsuma, K., Imaizumi, S., Lodge, T.P., and Watanabe, M., Macromolecules, 2016, vol. 49, no. 4, p. 1414.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by World Premier International Research Center Initiative (WPI Initiative) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nadiia Velychkivska or Larisa Janisova.

Ethics declarations

The authors declare no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Velychkivska, N., Janisova, L., Hill, J.P. et al. The Battery of Analytical Techniques Necessary for the Effective Characterization of Solutions of Temperature-Sensitive Polymers. rev. and adv. in chem. 11, 100–111 (2021). https://doi.org/10.1134/S2079978021010076

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079978021010076

Keywords:

Navigation