Skip to main content
Log in

“Highlight” of the Population Biology of Pauciennial Plants: Why Size Also Matters Zest of Pauciennial Plants Population Biology, or Why the Size of Plants Also Does Matter

  • Published:
Biology Bulletin Reviews Aims and scope Submit manuscript

Abstract

Due to their unique set of biomorphological features, pauciennial (annual and biennial) plants differ substantially from all other plant life forms, including perennial species. Thus, classical approaches to the Russian population biology of plants, which are associated with spectral analysis of ontegenic states, often have quite limited applicability or are inapplicable in general, i.e. the development of special approaches is required. The extremely high plasticity of pauciennials, as well as ontogenetic multivariation, results in a high heterogenity of the rhythms and rates of development, life state, and reproductive capacity (fecundity); thus, long-term observations (monitoring) on permanent plots with registration of the size of individuals by the number of phytomers (modules) in the dynamics and phenophases. The naturally asynchronous germination of seeds in populations of many species leads to polycohortness, the subsequent appearance of seedling cohorts among the individuals of active parts in populations. Each subsequent group or cohort appears to develop in the more stressful variants of ecological regimes (increased competition) prevailing at the time and therefore consist of smaller individuals. Analysis of frequency distributions of size (biomass) spectra usually reveals a positive skewness and, in the case of correct usage of statistics, can provide valuable information on populations of pauciennial plants, their life span, and a detailed description of features of their specific life forms. In contrast to the earlier declared view, the total fecundity of the individuals of the smallest size classes is much higher than that of the few highly fertile, largest individuals. The smallest individuals are most effective in terms of reproduction; they have a high reproductive effort, while isometry is common in pauciennials populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Abramova, L.M. and Nurmieva, S.V., Ontogenesis of the giant sumpweed (Cyclachaena xanthiifolia (Nutt.) Fresen), in Ontogeneticheskii atlas rastenii (Ontogenetic Atlas of Plants), Yoshkar-Ola: Mariisk. Gos. Univ., 2011, vol. 6, pp. 66–70.

  2. Begon, M., Harper, J., and Townsend, C., Ecology: Individuals, Populations, and Communities, Chichester: Wiley, 1986.

    Google Scholar 

  3. Bendel, R.B., Higgins, S.S., Teberg, J.E., and Pyke, D.A., Comparison of skewness coefficient, coefficient of variation, and Gini coefficient as inequality measures within populations, Oecologia, 1989, vol. 78, pp. 394–400.

    Article  CAS  Google Scholar 

  4. Bernston, G.M. and Weiner, J., Size structure of populations within populations: leaf number and size in crowded and uncrowded Impatiens pallida individuals, Oecologia, 1991, vol. 85, pp. 327–331.

    Article  Google Scholar 

  5. Bogoslov, A.V., Kashin, A.S., Shilova, I.V., Kritskaya, T.A., Parkhomenko, A.S., and Grebenyuk, L.V., Plasticity and features of general and consistent variability of traits in populations of Delphinium litvinowii Sambuk, Probl. Bot. Yuzh. Sib. Mongol., 2019, no. 18, pp. 86–91.

  6. Bonan, G.B., The size structure of theoretical plant populations: spatial patterns and neighborhood effects, Ecology, 1988, vol. 69, pp. 1721–1730.

    Article  Google Scholar 

  7. Chambers, J. and Aarssen, L.W., Offspring for the next generation: most are produced by small plants within herbaceous populations, Evol. Ecol., 2009, vol. 23, pp. 737–751.

    Article  Google Scholar 

  8. Chislenko, L.L., Struktura fauny i flory v svyazi s razmerami organizmov (The Structure of Fauna and Flora Related with Size of Organisms), Moscow: Mosk. Gos. Univ., 1981.

  9. Dolan, R.W., The effect of seed size and maternal source on individual size in a population of Ludwigia leptocarpa (Onagraceae), Am. J. Bot., 1984, vol. 71, pp. 1302–1307.

    Article  Google Scholar 

  10. Filipchenko, Yu.A., Izmenchivost’ i metody ee izucheniya (Variability and Its Analysis), Moscow: Nauka, 1978.

  11. Ford, E.D., Competition and stand structure in some even-aged plant monocultures, J. Ecol., 1975, vol. 63, pp. 311–333.

    Article  Google Scholar 

  12. Galkina, M.A., Ontogenesis of the beggarticks (Bidens frondosa), in Ontogeneticheskii atlas rastenii (Ontogenetic Atlas of Plants), Yoshkar-Ola: Mariisk. Gos. Univ., 2013, vol. 7, pp. 147–150.

  13. Gatsuk, L.E., Gemmaxillary plants and the system of subordinate units of their shoot system, Byull. Mosk. O-va Ispyt. Prir., Otd. Biol., 1974, vol. 79, no. 1, pp. 100–113.

    Google Scholar 

  14. Gatsuk, L.E., Unitary and modular living beings: the history of the concept development, Vestn. Tversk. Gos. Univ., Ser. Biol. Ekol., 2008, no. 9, pp. 29–41.

  15. Gottlieb, L.D., Genotypic similarity of large and small individuals in a natural population of the annual plant Stephanomeria exigua ssp. coronaria (Compositae), J. Ecol., 1977, vol. 65, pp. 127–134.

    Article  Google Scholar 

  16. Harper, J.L., Approaches to the study of plant competition, Symp. Soc. Exp. Biol., 1961, vol. 15, pp. 1–39.

    Google Scholar 

  17. Harper, J.L., Population Biology of Plants, London: Academic, 1977.

    Google Scholar 

  18. Hemmingsen, A.M., A statistical analysis of the differences in body size in related species, Vidensk. Medd. Naturhist. Foren. Kjobenhavn, 1934, vol. 98, pp. 125–160.

    Google Scholar 

  19. Hutchinson, G.E. and McArthur, G.E., A theoretical ecological model of size distributions among species of animals, Am. Nat., 1959, vol. 43, no. 869, pp. 117–125.

    Article  Google Scholar 

  20. Koyama, H. and Kira, T., Interspecific competition among higher plants. VIII. Frequency distributions of individual plant weight as affected by the interaction between plants, J. Inst. Polytech., Osaka City Univ., Ser. D, 1956, vol. 7, pp. 73–94.

    Google Scholar 

  21. Maevskii, P.F., Flora srednei polosy evropeiskoi chasti Rossii (Flora of the Middle Zone of the European Part of Russia), Moscow: KMK, 2014, 11th ed.

  22. Markov, M.V., Research on permanent quadrats in the USSR, in The Population Structure of Vegetation, Handb. Veg. Sci. Ser. vol. 3, Dordrecht: Springer-Verlag, 1985, pp. 111–119.

  23. Markov, M.V., Algorithm of population-botanical analysis of juvenile plants: architectural model–life form–ecological–cenotic strategy, Biol. Nauki, 1989, no. 11, pp. 90–104.

  24. Markov, M.V., Populyatsionnaya biologiya rozetochnykh i polurozetochnykh maloletnikh rastenii (Population Biology of Rosette and Semirosette Juvenile Plants), Kazan: Kazan. Gos. Univ., 1990.

  25. Markov, M.V., The role of multinucula in ensuring the plasticity of the reproductive potential of y Ceratocephala falcata (L.) Pers. and Myosurus minimus L., Byull. Mosk. O-va. Ispyt. Prir., Otd. Biol., 1992, vol. 97, no. 4, pp. 51–67.

    Google Scholar 

  26. Markov, M.V., Specific metameric structure of juvenile plants and allometric analysis of reproduction in their populations, Byull. Mosk. O-va. Ispyt. Prir., Otd. Biol., 2001, vol. 106, no. 5, pp. 83–90.

    Google Scholar 

  27. Markov, M.V., Specific ontogenesis of the mudwort Limosella aquatica L.: flowering seedlings, Materialy I (VII) Mezhdunarodnoi konferentsii po vodnym makrofitam “Gidrobotanika 2010” (Proc. I (VII) Int. Conf. on Aquatic Macrophytes “Hydrological Botany 2010”), Yaroslavl: Print Khaus, 2010, pp. 215–217.

  28. Markov, M.V., Populyatsionnaya biologiya rastenii (Population Biology of Plants), Moscow: KMK, 2012.

  29. Markov, M.V., Biomorphology, anatomy, and population biology of two members of clade Ranunculinae, Materialy Vserossiiskoi nauchnoi shkoly-konferentsii (s mezhdunarodnym uchastiem) posvyashchennoi 115-letiyu so dnya rozhdeniya A.A. Uranova “Sovremennye kontseptsii ekologii biosistem i ikh rol’ v reshenii problem sokhraneniya prirody i prirodopol’zovaniya” (Proc. All-Russ. Sci. School-Conf. with Int. Participation Dedicated to the 115th Anniversary of A.A. Uranov “Modern Ecological concepts of Biosystems and Their Role in Nature Conservation and Nature Management”), Penza, 2016, pp. 129–132.

  30. Markov, M.V. and Pleshchinskaya, E.N., Reproductive effort in plants, Zh. Obshch. Biol., 1987, vol. 48, no. 1, pp. 77–83.

    Google Scholar 

  31. Mirkin, B.M. and Naumova, L.G., Nauka o rastitel’nosti (Science about Vegetation), Ufa: Gilem, 1998.

  32. Mirkin, B.M. and Naumova, L.G., Zlobin, Yu.A. Population Ecology of Plants: Modern Status and Growth Points: Monograph, Sumy: Universitetskaya Kniga, 2009, 263 p., Zh. Obshch. Biol., 2010, vol. 71, no. 3, pp. 268–271.

    Google Scholar 

  33. Mithen, R., Harper, J.L., and Weiner, J., Growth and mortality of individual plants as a function of “available area,” Oecologia, 1984, vol. 62, pp. 57–60.

    Article  Google Scholar 

  34. Moles, A.T., Being John Harper: using evolutionary ideas to improve understanding of global patterns in plant traits, J. Ecol., 2018, vol. 106, pp. 1–18.

    Article  Google Scholar 

  35. Naylor, R.L., Changes in the structure of plant populations, J. Appl. Ecol., 1976, vol. 13, pp. 513–521.

    Article  Google Scholar 

  36. Obeid, M., Machin, D., and Harper, J.L., Influence of density on plant to plant variation in fiber flax, Linum usitatissimum, Crop. Sci., 1967, vol. 7, pp. 471–473.

    Article  Google Scholar 

  37. Polivariatnost’ razvitiya organizmov, populyatsii i soobshchestv (Polyvariant Development of Organisms, Populations and Communities), Yoshkar-Ola: Mariisk. Gos. Univ., 2006.

  38. Rabotnov, T.A., The phytocenological analysis of composition of populations, Probl. Bot., 1950a, no. 1, pp. 465–483.

  39. Rabotnov, T.A., Life cycle of perennial herbaceous plants in meadow cenoses, Tr. Bot. Inst., Akad. Nauk SSSR, Ser. 3, 1950b, no. 6, pp. 7–204.

  40. Ross, M.A. and Harper, J.L., Occupation of biological space during seedling establishment, J. Ecol., 1972, vol. 60, no. 1, pp. 77–88.

    Article  Google Scholar 

  41. Sabinin, D.A., Fiziologiya razvitiya rastenii (Development Physiology of Plants), Moscow: Nauka, 1963.

  42. Savinykh, N.P., Modules in plants, Materialy Mezhdunarodnoi konferentsii po anatomii i morfologii rastenii, Sankt-Peterburg, 14–18 oktyabrya 2002 g. (Proc. Int. Conf. on anatomy and Morphology of Plants, St. Petersburg, October 14–18, 2002), St. Petersburg, 2002, pp. 95–96.

  43. Schmidt-Nielsen, K., Scaling: Why is Animal Size so Important? New York: Cambridge Univ. Press, 1984.

    Book  Google Scholar 

  44. Shorina, N.I. and Smirnova, O.V., The population biology of ephemeroids, in The Population Structure of Vegetation, Handb. Veg. Sci. Ser. vol. 3, Dordrecht: Springer-Verlag, 1985, pp. 225–240.

  45. Solbrig, O.T., Studies on the population biology of the genus Viola. 11. The effect of plant size on fitness in Viola sororia, Evolution, 1981, vol. 35, pp. 1080–1094.

    PubMed  Google Scholar 

  46. Sukachev, V.N., Intraspecific and interspecific relationships among plants, Bot. Zh., 1953, vol. 38, no. 1, pp. 57–96.

    Google Scholar 

  47. Tikhodeev, O.N., Mechanisms of modifying variability, Ekol. Genet., 2013, vol. 11, no. 3, pp. 81–91.

    Google Scholar 

  48. Uranov, A.A., The vital state of species in the plant community, Byull. Mosk. O-va. Ispyt. Prir., Otd. Biol., 1960, vol. 65, no. 3, pp. 77–92.

    Google Scholar 

  49. Urbanska, K.M., Populationsbiologie der Pflanzen, Stuttgart: G. Fischer Verlag, 1992.

    Google Scholar 

  50. Vasil’chenko, I.T., Genetic and taxonomic role of modification of plants, Bot. Zh., 1970, vol. 55, no. 3, pp. 357–363.

    Google Scholar 

  51. Vasil’ev, A.E., Voronin, N.S., Elenevskii, A.G., and Serebryakova, T.I., Botanika. Anatomiya i morfologiya (Botany: Anatomy and Morphology), Moscow: Prosveshchenie, 1979.

  52. Vorontzova, L.I. and Zaugolnova, L.B., Population biology of steppe plants, in The Population Structure of Vegetation, Handb. Veg. Sci. Ser. vol. 3, Dordrecht: Springer-Verlag, 1985, pp. 143–178.

  53. Weiner, J., Size hierarchies in experimental populations of annual plants, Ecology, 1985, vol. 66, pp. 743–752.

    Article  Google Scholar 

  54. Weiner, J. and Solbrig, O.T., The meaning and measurement of size hierarchies in plant populations, Oecologia, 1984, vol. 61, no. 3, pp. 334–336.

    Article  Google Scholar 

  55. White, J. and Harper, J.L., Correlated changes in plant size and number in plant populations, J. Ecol., 1970, vol. 58, no. 2, pp. 467–485.

    Article  Google Scholar 

  56. Yurtsev, B.A., Life forms as one of key objects in botany, in Problemy ekologicheskoi morfologii (Ecological Morphology), Moscow: Nauka, 1976, pp. 9–54.

  57. Zaugol’nova, L.B., Assessment of degree of dynamic cenopopulations within same phytocenosis, in Dinamika tsenopopulyatsii rastenii (Dynamics of Plant Cenopopulations), Moscow: Nauka, 1985, pp. 45–62.

  58. Zavadskii, K.M., Overpopulation and its role in evolution, Bot. Zh., 1957, vol. 42, pp. 426–449.

    Google Scholar 

  59. Zhukova, L.A. and Ermakova, I.M., Structure and dynamics of coenopopuations of some temperate grasses, in The Population Structure of Vegetation, Handb. Veg. Sci. Ser. vol. 3, Dordrecht: Springer-Verlag, 1985, pp. 179–205.

  60. Zhukova, L.A. and Glotov, N.V., Morphological polyvariance of ontogeny in natural plant populations, Russ. J. Dev. Biol., 2001, vol. 32, no. 6, pp. 381–387.

    Article  Google Scholar 

  61. Zlobin, Yu.A., The inequality of individuals in plant cenopopulations, Bot. Zh., 1980, vol. 65, no. 3, pp. 311–322.

    Google Scholar 

  62. Zlobin, Yu.A., Tsenopopulyatsionnyi analiz v fitotsenologii (Cenopopulation Analysis in Phytocenology), Vladivostok: Akad. Nauk SSSR, 1984.

  63. Zlobin, Yu.A., Printsipy i metody izucheniya tsenoticheskikh populyatsii (Principles and Study Methods of Cenotic Populations), Kazan: Kazan. Gos. Univ., 1989a.

  64. Zlobin, Yu.A., Theoretical and practical assessment of vital composition of plant cenopopulations, Bot. Zh., 1989b, vol. 74, no. 6, pp. 769–781.

    Google Scholar 

  65. Zlobin, Yu.A., Populyatsionnaya ekologiya rastenii: soremennoe sostoyanie, tochki rosta (Population Ecology of Plants: Modern State and Growth Points), Sumy: Universitetskaya Kniga, 2009.

  66. Zlobin, Yu.A., Sklyar, V.G., and Klimenko, A.A., Populyatsii redkikh vidov rastenii: teoreticheskie osnovy i metodika izucheniya (Populations of Rare Plant Species: Theory and Practical Methods), Sumy: Universitetskaya Kniga, 2013.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Markov.

Ethics declarations

Conflict of interests. The author declares that he has no conflict of interests.

Statement on the welfare of humans or animals. This article does not contain any studies involving humans or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Markov, M.V. “Highlight” of the Population Biology of Pauciennial Plants: Why Size Also Matters Zest of Pauciennial Plants Population Biology, or Why the Size of Plants Also Does Matter. Biol Bull Rev 11, 451–461 (2021). https://doi.org/10.1134/S2079086421050054

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079086421050054

Navigation