Skip to main content
Log in

In Vitro Methods Used to Study DNA–Protein Interactions

  • Published:
Biology Bulletin Reviews Aims and scope Submit manuscript

Abstract

The interaction of proteins with DNA underlies all processes of cell functioning. They include DNA transcription, replication, and repair; maintenanc of the chromosome structure, activation and inhibition of the genes by protein transcription factors and protein enzymes involved in chromatin modification; maintenance of the nucleosome structure, the control of gene expression, etc. Transcription factors (TFs) bind to specific sets of DNA sequences, activating or inhibiting gene transcription, and are involved in a variety of signal transmission processes, including changes in cell differentiation, development, and environmental influences. This important role of DNA interactions with transcription factors led to their active study for many years and to the development of different methods to determine binding sites on the DNA matrix and the proteins interacting with them, including footprinting, Southern and Western blot assays, the systematic evolution of ligands via exponential enrichment (SELEX), chromatin immunoprecipitation (ChIP), electrophoretic mobility shift assay (EMSA), surface plasmon resonance (SPR), etc. Each method has advantages and disadvantages. The methods and approaches used to study TF/DNA binding can be divided into in vivo and in vitro. In vivo methods (e.g., ChIP) are used to study the TF/DNA interactions happening under specific conditions, including the tissue type, cells, moment of time, etc. and to scan TF binding sites throughout the genome. In vitro methods are used to study the TF/DNA interaction caused only by the protein and DNA structure to determine the binding site sequences, interaction forces, and characteristics of TF/DNA complexes. The review will list the most widely used in vitro methods for the study of DNA–protein interactions, since there are good reviews for each of them. The footprinting method and the methods to determine the DNA/protein affinity, binding rates, and dissociation of DNA/protein complexes will be discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Abbas, A., Linman, M.J., and Cheng, C., New trends in instrumental design for surface plasmon resonance-based biosensors, Biosens. Bioelectron., 2011, vol. 269, pp. 1815–1824.

    Article  CAS  Google Scholar 

  2. Alexander, M.K., Bourns, B.D., and Zakian, V.A., One-hybrid systems for detecting protein–DNA interactions, Methods Mol. Biol., 2001, vol. 77, pp. 241–259.

    Google Scholar 

  3. Alipanahi, B., Delong, A., and Weirauch, M.T., Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning, Nat. Biotechnol., 2015, vol. 33, pp. 831–838.

    Article  CAS  PubMed  Google Scholar 

  4. Arkova, O.V., Ponomarenko, M.P., Rasskazov, D.A., et al., Obesity-related known and candidate SNP markers can significantly change affinity of TATA-binding protein for human gene promoters, BMC Genomics, 2015, vol. 16, suppl. 13, p. S5. https://doi.org/10.1186/1471-2164-16-S13-S5

    Article  PubMed  PubMed Central  Google Scholar 

  5. Badis, G., Berger, M.F., Philippakis, A.A., et al., Diversity and complexity in DNA recognition by transcription factors, Science, 2009, vol. 32, pp. 1720–1723.

    Article  CAS  Google Scholar 

  6. Bailly, C., Kluza, J., Martin, C., et al., DNase I footprinting of small molecule binding sites on DNA, Methods Mol. Biol., 2005, vol. 288, pp. 319–342.

    CAS  PubMed  Google Scholar 

  7. Behera, V., Evans, P., and Face, C.J., Exploiting genetic variation to uncover rules of transcription factor binding and chromatin accessibility, Nat. Commun., 2018, vol. 9, p. 782. https://doi.org/10.1038/s41467-018-03082-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Berger, R., Duncan, M.R., and Berman, B., Nonradioactive gel mobility shift assay using chemiluminescent detection, Biotechniques, 1993, vol. 15, pp. 650–652.

    CAS  PubMed  Google Scholar 

  9. Berggard, T., Linse, S., and James, P., Methods for the detection and analysis of protein–protein interactions, Proteomics, 2007, vol. 7. 2833–2842.

    Article  PubMed  CAS  Google Scholar 

  10. Boyle, A.P., Davis, S., Shulha, H.P., et al., High-resolution mapping and characterization of open chromatin across the genome, Cell, 2008, vol. 132, pp. 311–322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Brenowitz, M., Senear, D.F., Shea, M.A., and Ackers, G.K., Quantitative DNase footprint titration: a method for studying protein–DNA interactions, in Methods in Enzymology, Vol. 130: Enzyme Structure, Hirs, C.H.W. and Timasheff, S.N., Eds., 9th ed., New York: Academic, 1986, part K, pp. 132–181.

  12. Brockman, J.M., Frutos, A.G., and Corn, R.M., A multistep chemical modification procedure to create DNA arrays on gold surfaces for the study of protein–DNA interactions with surface plasmon resonance imaging, J. Am. Chem. Soc., 1999, vol. 121, pp. 8044–8051.

  13. Bronner, V., Denkberg, G., Peled, M., et al., Therapeutic antibodies: discovery and development using the ProteOn XPR36 biosensor interaction array system, Anal. Biochem., 2010, vol. 406, pp. 147–156.

    Article  CAS  PubMed  Google Scholar 

  14. Brown, J.S. and Jackson, S.P., Ubiquitylation, neddylation and the DNA damage response, Open Biol., 2015, vol. 5, p. 150018. https://doi.org/10.1098/rsob.150018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Brown, T., Southern blotting, Curr. Protoc. Immunol., 2001. https://doi.org/10.1002/0471142735.im1006as06

  16. Bulyk, M.L., DNA microarray technologies for measuring protein–DNA interactions, Curr. Opin. Biotechnol., 2006, vol. 17, pp. 422–430.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Buratowski, S. and Chodosh, L.A., Mobility shift DNA-binding assay using gel electrophoresis, in Current Protocols in Molecular Biology, Ausubel, F.M., et al., Eds., New York: Wiley, 2001, vol. 36, no. 1, pp. 12.2.1–12.2.11.

  18. Cardew, A.S. and Fox, K.R., DNase I footprinting. drug-DNA interaction protocols, Methods Mol. Biol., 2010, vol. 613, pp. 153–172. https://doi.org/10.1007/978-1-60327-418-0_10

    Article  CAS  PubMed  Google Scholar 

  19. Castellated, M., Mothi, N., and Muñoz, V., Eukaryotic transcription factors can track and control their target genes using DNA antennas, Nat. Commun., 2020, vol. 11, p. 540. https://doi.org/10.1038/s41467-019-14217-8

    Article  CAS  Google Scholar 

  20. Choi, J.H., Lee, J.H., Son, J., and Choi, J.W., Noble metal-assisted surface plasmon resonance immunosensors, Sensors, 2020, vol. 20, p. 1003. https://doi.org/10.3390/s20041003

    Article  CAS  PubMed Central  Google Scholar 

  21. Choo, Y. and Klug, A., Designing DNA-binding proteins on of filamentous phage, Curr. Opin. Biotechnol., 1995, vol. 6, pp. 431–436.

    Article  CAS  PubMed  Google Scholar 

  22. Crawford, G.E., Davis, S., Scacheri, P.C., et al., DNase-chip: a high-resolution method to identify DNase I hypersensitive sites using tiled microarrays, Nat. Methods, 2006, vol. 3, pp. 503–509.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Dey, B., Thukral, S., Krishnan, S., et al., DNA–protein interactions: methods for detection and analysis, Mol. Cell Biochem., 2012, vol. 365, pp. 279–299.

    Article  CAS  PubMed  Google Scholar 

  24. Dhavan, G.M., Mollah, A.K., and Brenowitz, M., Equilibrium and kinetic quantitative DNase I footprinting, in Advances in DNA Sequence-Specific Agents, Jones, G.B., Ed., 4th ed., New York: Elsevier, 2002, pp. 139–155.

    Google Scholar 

  25. Djordjevic, M., SELEX experiments: new prospects, applications and data analysis in inferring regulatory pathways, Biomol. Eng., 2007, vol. 24, pp. 179–189.

    Article  CAS  PubMed  Google Scholar 

  26. Dooley, S., Welter, C., and Blin, N., Nonradioactive southwestern analysis using chemiluminescent detection, Biotechniques, 1992, vol. 13, pp. 540–543.

    CAS  PubMed  Google Scholar 

  27. Douzi, B., Protein-protein interactions: surface plasmon resonance, Methods Mol. Biol., 2017, vol. 1615, pp. 257–275. https://doi.org/10.1007/978-1-4939-7033-9_21

    Article  CAS  PubMed  Google Scholar 

  28. Drachkova, I.A., Savinkova, L.K., Arshinova, T.V., et al., The mechanism by which TATA-box polymorphisms associated with human hereditary diseases influence interactions with the TATA-binding protein, Hum. Mutat., 2014, vol. 35, pp. 601–608. https://doi.org/10.1002/humu.22535

    Article  CAS  PubMed  Google Scholar 

  29. Fletcher, M.C. and Fox, K.R., Dissociation kinetics of actinomycin D from individual GpC sites in DNA, Eur. J. Biochem., 1996, vol. 237, pp. 164–170.

    Article  CAS  PubMed  Google Scholar 

  30. Galas, D.J. and Schmitz, A., DNAase footprinting a simple method for the detection of protein-DNA binding specificity, Nucleic Acids Res., 1978, vol. 5, pp. 3157–3170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Garcia-Alonso, L., Holland, C.H., Ibrahim, M.M., et al., Benchmark and integration of resources for the estimation of human transcription factor activities, Genes Res., 2019, vol. 29, pp. 1363–1375. https://doi.org/10.1101/gr.240663.118

    Article  CAS  Google Scholar 

  32. Hampshire, A.J., Rusling, D.A., Broughton-Head, V.J., and Fox, K.R., Footprinting: a method for determining the sequence selectivity, affinity and kinetics of DNA-binding ligands, Methods, 2007, vol. 42, pp. 128–140.

    Article  CAS  PubMed  Google Scholar 

  33. Helmerhorst, E., Chandler, D.J., Nussio, M., and Mamotte, C.D., Realtime and label-free bio-sensing of molecular interactions by surface plasmon resonance: a laboratory medicine perspective, Clin. Biochem. Rev., 2012, vol. 33, pp. 161–173.

    PubMed  PubMed Central  Google Scholar 

  34. Henriksson-Peltola, P., Sehlen, W., and Haggard-Ljungquist, E., Determination of the DNA-binding kinetics of three related but heteroimmune bacteriophage repressors using EMSA and SPR analysis, Nucleic Acids Res., 2007, vol. 35, pp. 3181–3191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hoffman, B.G. and Jones, S., Genome-wide identification of DNA-protein interactions usingchromatin immunoprecipitation coupled with flow cell sequencing, J. Endocrinol., 2009, vol. 201, pp. 1–13. https://doi.org/10.1677/JOE-08-0526

    Article  CAS  PubMed  Google Scholar 

  36. Homola, J., Surface plasmon resonance sensors for detection of chemical and biological species, Chem. Rev., 2008, vol. 108, pp. 462–493.

    Article  CAS  PubMed  Google Scholar 

  37. Isalan, M. and Choo, Y., Engineering nucleic acid-binding proteins by phage display, Methods Mol. Biol., 2001, vol. 148, pp. 417–429.

    CAS  PubMed  Google Scholar 

  38. Jackson, M., Marks, L., May, G.H.W., and Wilson, J.B., The genetic basis of disease, Essays Biochem., 2018, vol. 62, pp. 643–723. https://doi.org/10.1042/EBC20170053

    Article  PubMed  PubMed Central  Google Scholar 

  39. Jolma, A., Kivioja, T., Toivonen, J., et al., Multiplexed massively parallel SELEX for characterization of human transcription factor binding specificities, Genes Res., 2010, vol. 20, pp. 861–873.

    Article  CAS  Google Scholar 

  40. Johnson, C.P., Jensen, I.E., Prakasam, A., et al., Engineered protein A for the orientational control of immobilized proteins, Bioconjugate Chem., 2003, vol. 14, pp. 974–978.

    Article  CAS  Google Scholar 

  41. Kasowski, M., Grubert, F., Heffelfinger, C., et al., Variation in transcription factor binding among humans, Science, 2010, vol. 328, pp. 232–235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kim, T.H. and Ren, B., Genome-wide analysis of protein–DNA interactions, Annu. Rev. Genomics Hum. Genet., 2006, vol. 7, pp. 81–102.

    Article  PubMed  CAS  Google Scholar 

  43. Kiyama, R. and Oishi, M., Protection of DNA sequences by triplex-bridge formation, Nucleic Acids Res., 1995, vol. 23, pp. 452–458. https://doi.org/10.1093/nar/23.3.452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kurien, B.T. and Scofield, R.H., Western blotting, Methods, 2006, vol. 38, pp. 283–293.

    Article  CAS  PubMed  Google Scholar 

  45. Labbe, S., Harrisson, J.F., and Seguin, C., Identification of sequence-specific DNA-binding proteins by southwestern blotting, Methods Mol. Biol., 2009, vol. 543, pp. 151–161.

    Article  CAS  PubMed  Google Scholar 

  46. Lambert, S.A., Jolma, A., Campitelli, L.F., et al., The human transcription factors, Cell, 2018, vol. 172, pp. 650–665.

    Article  CAS  PubMed  Google Scholar 

  47. Lee, T.I., Johnstone, S.E., and Young, R.A., Chromatin immunoprecipitation and microarray-based analysis of protein location, Nat. Protoc., 2006, vol. 1, pp. 729–748. https://doi.org/10.1038/nprot.2006.98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Loehlin, D.W., Ames, J.R., Vaccaro, K., and Carroll, S.B., A major role for noncoding regulatory mutations in the evolution of enzyme activity, Proc. Natl. Acad. Sci. U.S.A., 2019, vol. 116, pp. 12383–12389.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lofas, S., Johnsson, B., Edström, Å., et al., Methods for site controlled coupling to carboxymethyldextran surfaces in surface plasmon resonance sensors, Biosens. Bioelectron., 1995, vol. 10, pp. 813–822.

    Article  Google Scholar 

  50. Louche, A., Salcedo, S.P., and Bigot, S., Protein-protein interactions: pull-down assays, Methods Mol. Biol., 2017, vol. 1615, pp. 247–255. https://doi.org/10.1007/978-1-4939-7033-9_20

    Article  CAS  PubMed  Google Scholar 

  51. Luscombe, N.M., Austin, S.E., Berman, H.M., et al., An overview of the structures of protein-DNA complexes, Genome Biol., 2000, vol. 1, art. ID 001.

    Article  Google Scholar 

  52. Majka, J. and Speck, C., Analysis of protein–DNA interactions using surface plasmon resonance, Adv. Biochem. Eng. Biotechnol., 2007, vol. 104, pp. 13–36.

    CAS  PubMed  Google Scholar 

  53. Mariani, S. and Minunni, M., Surface plasmon resonance applications in clinical analysis, Anal. Bioanal. Chem., 2014, vol. 406, pp. 2303–2323. https://doi.org/10.1007/s00216-014-7647-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Maryas, J., Factor, J., Čapkova, L., et al., Pull-down assay on streptavidin beads and surface plasmon resonance chips for SWATH-MS-based interactomics, Cancer Genomics Proteomics, 2018, vol. 15, pp. 395–404. https://doi.org/10.21873/cgp.20098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Maurano, M.T., Humbert, R., Rynes, E., et al., Systematic localization of common disease-associated variation in regulatory DNA, Science, 2012, vol. 337, no. 6099, pp. 1190–1195.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Matys, V., Fricke, E., Geffers, R., et al., TRANSFAC: transcriptional regulation, from patterns to profiles, Nucleic Acids Res., 2003, vol. 31, pp. 374–378.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Miller, D.E., Patel, Z.H., Lu, X., et al., Screening for functional non-coding genetic variants using electrophoretic mobility shift assay (EMSA) and DNA-affinity precipitation assay (DAPA), J. Visualized Exp., 2016, vol. 114, p. 54093. https://doi.org/10.3791/54093

    Article  CAS  Google Scholar 

  58. Mishra, M., Tiwari, S., and Gomes, A.V., Protein purification and analysis: next generation Western blotting techniques, Exp. Rev. Proteomics, 2017, vol. 14, pp. 1037–1053. https://doi.org/10.1080/14789450.2017.13881674

    Article  CAS  Google Scholar 

  59. Mukhopadhyay, J., Mekler, V., Kortkhonjia, E., et al., Fluorescence resonance energy transfer (FRET) in analysis of transcription-complex structure and function, Methods Enzymol., 2003, vol. 371, pp. 144–159.

    Article  CAS  PubMed  Google Scholar 

  60. Munoz, E.M., Correa, J., Riguera, R., and Fernandez-Megia, E., Real-time evaluation of binding mechanisms in multivalent interactions: a surface plasmon resonance kinetic approach, J. Am. Chem. Soc., 2013, vol. 135, pp. 5966–5969. https://doi.org/10.1021/ja9074826

    Article  CAS  PubMed  Google Scholar 

  61. Myszka, D.G., Jonsen, M.D., and Graves, B.J., Equilibrium analysis of high affinity interactions using BIACORE, Anal. Biochem., 1998a, vol. 2, pp. 326–330.

    Article  Google Scholar 

  62. Myszka, D.G., He, X., Dembo, M., et al., Extending the range of rate constants available from BIACORE: interpreting mass transport-influenced binding data, Biophys. J., 1998b, vol. 75, pp. 583–594.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Nahshol, O., Bronner, V., Notcovich, A., et al., Parallel kinetic analysis and affinity determination of hundreds of monoclonal antibodies using the ProteOn XPR36, Anal. Biochem., 2008, vol. 383, pp. 52–60.

    Article  CAS  PubMed  Google Scholar 

  64. Navratilova, I., Dioszegi, M., and Myszka, D.G., Analyzing ligand and small molecule binding activity of solubilized GPCRs using biosensor technology, Anal. Biochem., 2006, vol. 355, pp. 132–139. https://doi.org/10.1016/j.ab.2006.04.021

    Article  CAS  PubMed  Google Scholar 

  65. Nguyen, B., Tanious, F.A., and Wilson, W.D., Biosensor-surface plasmon resonance: quantitative analysis of small molecule–nucleic acid interactions, Methods, 2007, vol. 42, pp. 150–161.

    Article  CAS  PubMed  Google Scholar 

  66. Olaru, A., Bala, C., Jaffrezic-Renault, N., and Aboul-Enein, H.Y., Surface plasmon resonance (SPR) biosensors in pharmaceutical analysis, Crit. Rev. Anal. Chem., 2015, vol. 45, pp. 97–105. https://doi.org/10.1080/10408347.2014.881250

    Article  CAS  PubMed  Google Scholar 

  67. Orenstein, Y. and Shamir, R., Modeling protein–DNA binding via high-throughput in vitro technologies, Brief Funct. Genomics, 2017, vol. 16, pp. 171–180.

    CAS  PubMed  Google Scholar 

  68. Oshannessy, D.J., Brighamburke, M., and Peck, K., Immobilization chemistries suitable for use in the BIAcore surface plasmon resonance detector, Anal. Biochem., 1992, vol. 205, pp. 132–136.

    Article  CAS  Google Scholar 

  69. Pattnaik, P., Surface plasmon resonance: applications in understanding receptor-ligand interaction, Appl. Biochem. Biotechnol., 2005, vol. 126, pp. 79–92. https://doi.org/10.1385/abab:126:2:079

    Article  CAS  PubMed  Google Scholar 

  70. Pawlak, M., Niescierowicz, K., and Winata, C.L., Decoding the heart through next generation sequencing approaches, Genes (Basel), 2018, vol. 9, p. E289. https://doi.org/10.3390/genes9060289

    Article  CAS  PubMed  Google Scholar 

  71. Peungthum, P., Sudprasert, K., Amarit, R., et al., Surface plasmon resonance imaging for ABH antigen detection on red blood cells and in saliva: secretor status-related ABO subgroup identification, Analyst, 2017, vol. 142, pp. 1471–1481. https://doi.org/10.1039/c7an00027h

    Article  CAS  PubMed  Google Scholar 

  72. Powell, L.M., Dryden, D.T., Willcock, D.F., et al., DNA recognition by the EcoK methyltransferase. The influence of DNA methylation and the cofactor S-adenosyl-L-methionine, J. Mol. Biol., 1993, vol. 234, pp. 60–71. https://doi.org/10.1006/jmbi.1993.1563

    Article  CAS  PubMed  Google Scholar 

  73. Powell, L.M., Zur Lage, P.I., Prentice, D.R., et al., The proneural proteins Atonal and Scute regulate neural target genes through different E-box binding sites, Mol. Cell Biol., 2004, vol. 24, pp. 9517–9526.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ray, D., Kazan, H., Cook, K.B., et al., A compendium of RNA-binding motifs for decoding gene regulation, Nature, 2013, vol. 499, pp. 172–177. https://doi.org/10.1038/nature12311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Reddy, P.J., Sadhu, S., Ray, S., and Srivastava, S., Cancer biomarker detection by surface plasmon resonance biosensors, Clin. Lab. Med., 2012, vol. 32, pp. 47–72.

    Article  PubMed  Google Scholar 

  76. Rossouw, D., Jacobson, D., and Bauer, F.F., Transcriptional regulation and the diversification of metabolism in wine yeast strains, Genetics, 2012, vol. 190, pp. 251–261. https://doi.org/10.1534/genetics.111.132720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Ruscher, K., Reuter, M., Kupper, D., et al., A fluorescence based non-radioactive electrophoretic mobility shift assay, J. Biotechnol., 2000, vol. 78, pp. 163–170.

    Article  CAS  PubMed  Google Scholar 

  78. Rusmini, F., Zhong, Z., and Feijen, J., Protein immobilization strategies for protein biochips, Biomacromolecules, 2007, vol. 8, pp. 1775–1789. https://doi.org/10.1021/bm061197b

    Article  CAS  PubMed  Google Scholar 

  79. Sandaltzopoulos, R. and Becker, P.B., Solid phase DNase I footprinting: quick and versatile, Nucleic Acids Res., 1994, vol. 22, pp. 1511–1512. https://doi.org/10.1093/nar/22.8.1511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Schlundt, A., Tants, J.N., and Sattler, M., Integrated structural biology to unravel molecular mechanisms of protein-RNA recognition, Methods, 2017, vol. 15, pp. 118–136. https://doi.org/10.1016/j.ymeth.2017.03.015

    Article  CAS  Google Scholar 

  81. Schuck, P. and Zhao, H., The role of mass transport limitation and surface heterogeneity in the biophysical characterization of macromolecular binding processes by SPR biosensing, Methods Mol. Biol., 2010, vol. 627, pp. 15–54. https://doi.org/10.1007/978-1-60761-670-2_2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Schuck, P., Zhao, H., and Karlsson, R., Affinity analysis of non-steady-state data obtained under mass transport limited conditions using BIAcore technology, J. Mol. Recognit., 1999, vol. 12, pp. 285–292. https://doi.org/10.1002/(SICI)1099-1352(199909/10)12:5<285:AID-JMR469>3.0.CO;2-Y

    Article  Google Scholar 

  83. Siggers, T., Duyzend, M.H., Reddy, J., et al., Non-DNA-binding cofactors enhance DNA-binding specificity of a transcriptional regulatory complex, Mol. Syst. Biol., 2011, vol. 7, p. 555. https://doi.org/10.1038/msb.2011.89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Singh, B. and Nath, S.K., Identification of proteins interacting with single nucleotide polymorphisms (SNPs) by DNA pull-down assay, Methods Mol. Biol., 2019, vol. 1855, pp. 355–362. https://doi.org/10.1007/978-1-4939-8793-1_30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Situ, C., Mooney, M.H., Elliott, C.T., and Buijs, J., Advances in surface plasmon resonance biosensor technology towards high-throughput, food-safety analysis, TrAC, Trends Anal. Chem., 2010, vol. 29, pp. 1305–1315.

    Article  CAS  Google Scholar 

  86. Slattery, M., Riley, T., Liu, P., et al., Cofactor binding evokes latent differences in DNA binding specificity between Hox proteins, Cell, 2011, vol. 147, pp. 1270–1282. https://doi.org/10.1016/j.cell.2011.10.053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Slattery, M., Zhou, T., Yang, L., et al., Absence of a simple code: how transcription factors read the genome, Trends Biochem. Sci., 2014, vol. 39, pp. 381–399. https://doi.org/10.1016/j.tibs.2014.07.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Smith, G.P., Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface, Science, 1985, vol. 228, pp. 1315–1317. https://doi.org/10.1126/science.4001944

    Article  CAS  PubMed  Google Scholar 

  89. Song, L. and Crawford, G.E., DNase-seq: a high-resolution technique for mapping active gene regulatory elements across the genome from mammalian cells, Cold Spring Harb. Protoc., 2010, vol. 2010. https://doi.org/10.1101/pdb.prot5384

  90. Spencer, V., Sun, J.M., Li, L., and Davie, J.R., Chromatin immunoprecipitation: a tool for studying histone acetylation and transcription factor binding, Methods, 2003, vol. 31, pp. 67–75. https://doi.org/10.1016/s1046-2023(03)00089-6

    Article  CAS  PubMed  Google Scholar 

  91. Stockley, P.G. and Persson, B., Surface plasmon resonance assays of DNA–protein interactions, Methods Mol. Biol., 2009, vol. 543, pp. 653–669. https://doi.org/10.1007/978-1-60327-015-1_38

    Article  CAS  PubMed  Google Scholar 

  92. Stoddard, S.F. and Howe, M.M., Localization and regulation of bacteriophage Mu promoters, J. Bacteriol., 1989, vol. 171, no. 6, pp. 3440–3448. https://doi.org/10.1128/jb.171.6.3440-3448.1989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Sundberg, E.J., Andersen, P.S., Gorshkova, I.N., and Schuck, P., Surface plasmon resonance biosensing in the study of ternary systems of interacting proteins, in Protein Interactions: Biophysical Approaches for the Study of Complex Reversible Systems, Schuck, P., Ed., New York: Springer-Verlag, 2007, vol. 5, pp. 97–141.

    Google Scholar 

  94. Sung, M.H., Guertin, M.J., Baek, S., and Hager, G.L., DNase footprint signatures are dictated by factor dynamics and DNA sequence, Mol. Cell, 2014, vol. 56, pp. 275–285. https://doi.org/10.1016/j.molcel.2014.08.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Tsuchiya, Y., Kinoshita, K., and Nakamura, H., PreDs: a server for predicting dsDNA-binding site on protein molecular surfaces, Bioinformatics, 2004, vol. 21, pp. 1721–1723.

    Article  PubMed  CAS  Google Scholar 

  96. Tuerk, C. and Gold, L., Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase, Science, 1990, vol. 249, pp. 505–510. https://doi.org/10.1126/science.2200121

    Article  CAS  PubMed  Google Scholar 

  97. Tullius T.D. and Dombroski B.A., Hydroxy radical footprinting: a high-resolution method for mapping protein-DNA contacts, Methods Enzymol., 1987, vol. 155, pp. 537–558. https://doi.org/10.1016/0076-6879(87)55035-2

    Article  CAS  PubMed  Google Scholar 

  98. Vidal, M., Brachmann, R.K., Fattaey, A., et al., Reverse two-hybrid and one-hybrid systems to detect dissociation of protein–protein and DNA–protein interaction, Proc. Natl. Acad. Sci. U.S.A., 1996, vol. 93, pp. 10315–10320. https://doi.org/10.1073/pnas.93.19.10315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Wang, L., Xu, G., Chen, H., et al., DrRRA: a novel response regulator essential for the extreme radioresistance of Deinococcus radiodurans, Mol. Microbiol., 2008, vol. 6, pp. 1211–1222. https://doi.org/10.1111/j.1365-2958.2008.06113.x

    Article  CAS  Google Scholar 

  100. Waswa, J., Irudayaraj, J., and DebRoy, C., Direct detection of E. coli O157:H7 in selected food systems by a surface plasmon resonance biosensor, LWT–Food Sci. Technol., 2007, vol. 40, pp. 187–192.

    Article  CAS  Google Scholar 

  101. Weirauch, M.T., Yang, A., Albu, M., et al., Determination and inference of eukaryotic transcription factor sequence specificity, Cell, 2014, vol. 158, pp. 1431–1443. https://doi.org/10.1016/j.cell.2014.08.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Wilson, D.O., Johnson, P., and McCord, B.R., Nonradiochemical DNase I footprinting by capillary electrophoresis, Electrophoresis, 2001, vol. 22, pp. 1979–1986.

    Article  CAS  PubMed  Google Scholar 

  103. Wissink, E.M., Vihervaara, A., Tippens, N.D., et al., Nascent RNA analyses: tracking transcription and its regulation, Nat. Rev. Genet., 2019, vol. 20, pp. 705–723. https://doi.org/10.1038/s41576-019-0159-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Xiao, Z., Zou, Q., Liu, Y., and Xuerui Yanga, X., Genome-wide assessment of differential translations with ribosome profiling data, Nat. Commun., 2016, vol. 7, p. 11194. https://doi.org/10.1038/ncomms11194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Yamazaki, S., Hayano, M., and Masai, H., Replication timing regulation of eukaryotic replicons: Rif1 as a global regulator of replication timing, Trends Genet., 2013, vol. 29, pp. 449–460. https://doi.org/10.1016/j.tig.2013.05.001

    Article  CAS  PubMed  Google Scholar 

  106. Yanase, Y., Hiragun, T., Yanase, T., et al., Evaluation of peripheral blood basophil activation by means of surface plasmon resonance imaging, Biosens. Bioelectron., 2012, vol. 32, pp. 62–68. https://doi.org/10.1016/j.bios.2011.11.023

    Article  CAS  PubMed  Google Scholar 

  107. Yuk, J.S. and Ha, K.S., Proteomic applications of surface plasmon resonance biosensors: analysis of protein arrays, Exp. Mol. Med., 2005, vol. 37, pp. 1–10. https://doi.org/10.1038/emm.2005.1

    Article  CAS  PubMed  Google Scholar 

  108. Zeng, P.Y., Vakoc, C.R., Chen, Z.C., et al., In vivo dual cross-linking for identification of indirect DNA associated proteins by chromatin immunoprecipitation, Biotechniques, 2006, vol. 41, pp. 694–698.

    Article  CAS  PubMed  Google Scholar 

  109. Zhen, G., Zurcher, S., Falconnet, D., et al., NTA-functionalized poly(l-lysine)-g-poly(ethylene glycol): a polymeric interface for binding and studying 6 his-tagged proteins, Proc. IEEE Engineering in Medicine and Biology 27th Annual Conf., Red Hook, NY: Curran Assoc.,2005, vol. 1, pp. 1036–1038.

  110. Zhen, G., Zurcher, S., Falconnet, D., et al., Analysis of protein–DNA interactions using surface plasmon resonance, Adv. Biochem. Eng. Biotechnol., 2007, vol. 104, pp. 13–36.

    Google Scholar 

Download references

Funding

This work was supported by the budgetary project no. 0324-2019-0042-S-01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. K. Savinkova.

Ethics declarations

Conflict of interests. The authors declare that they have no conflicts of interest.

Statement on the welfare of humans or animals. This article does not contain any studies involving animals performed by any of the authors.

Additional information

Translated by A. Barkhash

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Savinkova, L.K., Sharypova, E.B. & Kolchanov, N.A. In Vitro Methods Used to Study DNA–Protein Interactions. Biol Bull Rev 11, 344–357 (2021). https://doi.org/10.1134/S2079086421040071

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079086421040071

Keywords:

Navigation