Skip to main content
Log in

Productivity and Stress-Tolerance of Transgenic Tobacco Plants with a Constitutive Expression of the Rapeseed Glutathione Synthetase Gene BnGSH

  • Published:
Russian Journal of Genetics: Applied Research

Abstract

Glutathione is the most important part of a plant’s antioxidant defense system. Two enzymes are involved in cellular glutathione biosynthesis: glutamylcysteine ligase and glutathione synthetase, of which the latter catalyzes the transfer of glycine to the glutamylcysteine dipeptide. Transgenic plants with an elevated expression level of the glutathione synthetase genes are known to be tolerant to heavy metals. However, our knowledge on their tolerance to other types of the abiotic stress is insufficient. The goal of this study is to produce transgenic tobacco plants with a constitutive expression of the glutathione synthetase gene BnGSH from rapeseed and to estimate their growth parameters under the normal conditions, as well as under the effects of salt, drought, and cold stresses. We generate 17 lines of transgenic plants with the rapeseed BnGSH gene under the control of the 35S promoter by agrobacterium-mediated transformation. The transgene presence is confirmed by the PCR and histochemical analysis of the activity of the GUS reporter gene. Twelve lines with the highest expression level of the BnGSH gene are chosen based on the results of RT-PCR. The following morphological parameters are measured: stem height, leaf area, flower length, fresh and dry weights of shoots, and root length. Some transgenic plants demonstrated increased productivity both under normal conditions and under the effect of a high salinity stress. However, no change in the tolerance to drought and cold was observed in the transgenic plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wise, R.R. and Naylor, A.W., Chilling-enhanced photooxidation: Evidence for the role of singlet oxygen and superoxide in the breakdown of pigments and endogenous antioxidants, Plant Physiol., 1987, vol. 83, no. 2, pp. 278–282. doi 10.1104/pp.83.2.278

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Zagoskina, N.V. and Nazarenko, L.V., Reactive oxygen species and the antioxidant system of plants, Vestn. Mosk. Gor. Pedagog. Univ., Ser. Estestv. Nauki, 2016, no. 22, pp. 9–23.

    Google Scholar 

  3. Kolupaev, Yu.E., Plant cell antioxidants, their role in ROS signaling and plant resistance, Usp. Sovrem. Biol., 2016, vol. 136, pp. 181–198.

    Google Scholar 

  4. Noctor, G., Mhamdi, A., Chaouch, S., et al., Glutatione in plants: An integrated overview, Plant Cell Environ., 2012, vol. 35, pp. 454–484. doi 10.1111/j.1365-3040.2011.02400.x

    Article  PubMed  CAS  Google Scholar 

  5. Pivato, M., Fabrega-Prats, M., and Masi, A., Lowmolecular-weight thiols in plants: Functional and analytical implications, Arch. Biochem. Biophys., 2014, vol. 560, pp. 83–99. doi 10.1016/j.abb.2014.07.018

    Article  PubMed  CAS  Google Scholar 

  6. Pilon-Smits, E., Phytoremediation, Annu. Rev. Plant Biol., 2005, vol. 56, pp. 15–39. doi 10.1146/annurev.arplant.56.032604.144214

    Article  PubMed  CAS  Google Scholar 

  7. Marrs, K., The functions and regulation of glutathione-S-transferases in plants, Annu. Rev. Plant Physiol. Plant Mol. Biol., 1996, vol. 47, pp. 127–158. doi 10.1146/annurev.arplant.47.1.127

    Article  PubMed  CAS  Google Scholar 

  8. Flocco, C.G., Lindblom, S.D., and Smits, E.A., Overexpression of enzymes involved in glutathione synthesis enhances tolerance to organic pollutants in Brassica juncea, Int. J. Phytorem., 2004, vol. 6, pp. 289–304. doi 10.1080/16226510490888811

    Article  CAS  Google Scholar 

  9. Foyer, C.H., Souriau, N., Perret, S., et al., Overexpression of glutathione reductase but not glutathione synthetase leads to increases in antioxidant capacity and resistance to photoinhibition in poplar trees, Plant Physiol., 1995, vol. 109, pp. 1047–1057. 10. 1104/pp.109.3.1047

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Liedschulte, V., Wachter, A., Zhigang, A., and Rausch, T., Exploiting plants for glutathione (GSH) production: Uncoupling GSH synthesis from cellular controls results in unprecedented GSH accumulation, Plant Biotechnol. J., 2010, vol. 8, pp. 807–820. doi 10.1111/j.1467-7652.2010.00510.x

    Article  PubMed  CAS  Google Scholar 

  11. Guo, J., Dai, X., Xu, W., and Ma, M., Overexpressing GSH1 and AsPCS1 simultaneously increases the tolerance and accumulation of cadmium and arsenic in Arabidopsis thaliana, Chemosphere, 2008, vol. 72, pp. 1020–1026. doi 10.1016/j.chemosphere.2008.04.018

    Article  PubMed  CAS  Google Scholar 

  12. Zhu, Y.L., Pilon-Smits, E.A.H., Jouanin, L., and Terry, N., Overexpression of glutathione synthetase in Indian mustard enhances cadmium accumulation and tolerance, Plant Physiol., 1999, vol. 119, pp. 73–80. 10. 1104/pp.119.1.73

    Article  CAS  Google Scholar 

  13. Gill, S.S. and Tuteja, N., Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants, Plant Physiol. Biochem., 2010, vol. 48, pp. 909–930. doi 10.1016/j.plaphy.2010.08.016

    Article  PubMed  CAS  Google Scholar 

  14. Kuluev, B.R., Knyazev, A.V., Lebedev, Ya.P., Postrigan’, B.N., and Chemeris, A.V., Obtaining transgenic tobacco plants expressing conserved regions of the AINTEGUMENTA gene in antisense orientation, Russ. J. Plant Physiol., 2012, vol. 59, pp. 307–317. doi 10.1134/S1021443712030107

    Article  CAS  Google Scholar 

  15. Kuluev, B.R., Knyazev, A.V., Chemeris, A.V., and Vakhitov, V.A., Morphological features of transgenic tobacco plants expressing the AINTEGUMENTA gene of rape under control of the dahlia mosaic virus promoter, Russ. J. Dev. Biol., 2013, vol. 44, pp. 86–89. doi 10.1134/S1062360413020070

    Article  CAS  Google Scholar 

  16. Choi, J.Y., Seo, Y.S., Kim, S.J., et al., Constitutive expression of CaXTH3, a hot pepper xyloglucan endotransglucosylase/hydrolase, enhanced tolerance to salt and drought stresses without phenotypic defects in tomato plants (Solanum lycopersicum cv. Dotaerang), Plant Cell Rep., 2011, vol. 30, pp. 867–877. doi 10.1007/s00299-010-0989-3

    Article  PubMed  CAS  Google Scholar 

  17. Cheng, M.C., Ko, K., Chang, W.L., et al., Increased glutathione contributes to stress tolerance and global translational changes in Arabidopsis, Plant J., 2015, vol. 83, pp. 926–939. doi 10.1111/tpj.12940

    Article  PubMed  CAS  Google Scholar 

  18. Vijayakumar, H., Thamilarasan, S.K., Shanmugam, A., et al., Glutathione transferases superfamily: Coldinducible expression of distinct GST genes in Brassica oleracea, Int. J. Mol. Sci., 2016, vol. 17, no. 8. doi 10.3390/ijms17081211

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. R. Kuluev.

Additional information

Original Russian Text © B.R. Kuluev, Z.A. Berezhneva, E.V. Mikhaylova, B.N. Postrigan, A.V. Knyazev, 2017, published in Ecologicheskaya Genetika, 2017, Vol. 15, No. 1, pp. 12–19.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuluev, B.R., Berezhneva, Z.A., Mikhaylova, E.V. et al. Productivity and Stress-Tolerance of Transgenic Tobacco Plants with a Constitutive Expression of the Rapeseed Glutathione Synthetase Gene BnGSH. Russ J Genet Appl Res 8, 190–196 (2018). https://doi.org/10.1134/S2079059718020077

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079059718020077

Keywords

Navigation