Skip to main content
Log in

Stress-induced systems in Escherichia coli and their response to terahertz radiation

  • Published:
Russian Journal of Genetics: Applied Research

Abstract

We summarize the latest data concerning the reactions of Escherichia coli to nonthermal terahertz radiation. Escherichia coli is the simplest and most convenient model object for studying the effects of terahertz radiation on living organisms. Its genetics and metabolism have been well studied, and its easy accessibity to genetic engineering allows designing biosensors that employ the promoters of genes activated by certain stress factors and the reporter GFP protein. Escherichia coli cells transformed with such biosensor constructs produce easily quantitatable fluorescence in response to terahertz radiation. In this review, we present data on the reaction of certain E. сoli stress-induced systems to terahertz radiation, both ours and reported by other authors. We discuss experimental results for E. сoli/pKatGGFP, E. сoli/pCopAGFP, and E. сoli/pEmrRGFP biosensors, which are used to identify E. сoli genetic networks responding to oxidative stress, copper ion homeostasis failures, and antiseptics, respectively. The data reviewed indicate that exposure to nonthermal terahertz radiation activates E. сoli gene networks related to oxidative stress and copper ion homeostasis but does not affect those induced by antibiotics, protonophores, or superoxide anions. The fact that E. сoli/pKatGGFP and E. сoli/pCopAGFP biosensors have different activation and reaction periods when exposed to terahertz radiation and natural inducers suggests that the responses of oxidative stress and copper ion homeostasis systems to terahertz radiation are specific.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altuvia, S., Weinstein-Fischer, D., Zhang, A., Postow, L., and Storz, G., A small, stable RNA induced by oxidative stress: Role as a pleiotropic regulator and antimutator, Cell, 1997, vol. 90, no. 1, pp. 43–53.

    Article  CAS  PubMed  Google Scholar 

  • Altuvia, S., Zhang, A., Argamon, L., Tiwari, A., and Storz, G., The Escherichia coli OxyS regulatory RNA represses fhlA translation by blocking ribosome binding, EMBO J., 1998, vol. 17, no. 20, pp. 6069–6075.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andersen, J., Sternberg, C., Poulsen, L.K., Bjorn, S.P., Givskov, M., and Molin, S., New unstable variants of green fluorescent protein for studies of transient gene expression in bacteria, Appl. Environ. Microbiol., 1998, vol. 64, no. 6, pp. 2240–2246.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Arsène, F., Tomoyasu, T., and Bukau, B., The heat shock response of Escherichia coli, Int. J. Food Microbiol., 2000, vol. 55, nos. 1–3, pp. 3–9.

    Article  PubMed  Google Scholar 

  • Aslund, F., Zheng, M., Beckwith, J., and Storz, G., Regulation of the OxyR transcription factor by hydrogen peroxide and the cellular thiol-disulfide status, Proc. Natl. Acad. Sci. U.S.A., 1999, vol. 96, no. 11, pp. 6161–6165.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Belkin, S., Smulski, D.R., Vollmer, A.C., Van Dyk, T.K., and Larossa, R.A., Oxidative stress detection with Escherichia coli harboring a katG'::lux fusion, Appl. Environ. Microbiol., 1996, vol. 62, no. 7, pp. 2252–2256.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bird, L.J., Coleman, M.L., and Newman, D.K., Iron and copper act synergistically to delay anaerobic growth of bacteria, Appl. Environ. Microbiol., 2013, vol. 79, no. 12, pp. 3619–3627.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bogomazova, A.N., Vassina, E.M., Goryachkovskaya, T.N., Popik, V.M., Sokolov, A.S., Kolchanov, N.A., Lagarkova, M.A., Kiselev, S.L., and Peltek, S.E., No DNA damage response and negligible genome-wide transcriptional changes in human embryonic stem cells exposed to terahertz radiation, Sci. Rep., 2015, vol. 5, p. 7749. doi 10.1038/srep07749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borges-Walmsley, M.I., Beauchamp, J., Kelly, S.M., Jumel, K., Candlish, D., Harding, S.E., Price, N.C., and Walmsley, A.R., Identification of oligomerization and drugbinding domains of the membrane fusion protein EmrA, J. Biol. Chem., 2003, vol. 278, no. 15, pp. 12903–12912.

    Article  CAS  PubMed  Google Scholar 

  • Brown, N.L., Stoyanov, J.V., Kidd, S.P., and Hobman, J.L., The MerR family of transcriptional regulators, FEMS Microbiol. Rev., 2003, vol. 27, nos. 2–3, pp. 145–163.

    Article  CAS  PubMed  Google Scholar 

  • Cabiscol, E., Tamarit, J., and Ros, J., Oxidative stress in bacteria and protein damage by reactive oxygen species, Int. Microbiol., 2000, vol. 3, no. 1, pp. 3–8.

    CAS  PubMed  Google Scholar 

  • Chillappagari, S., Seubert, A., Trip, H., Kuipers, O.P., Marahiel, M.A., and Miethke, M.J., Copper stress affects iron homeostasis by destabilizing iron-sulfur cluster formation in Bacillus subtilis, J. Bacteriol., 2010, vol. 192, no. 10, pp. 2512–2524.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Macario, A.J., Heat-shock response in Archaea, Trends Biotechnol., 1994, vol. 12, no. 12, pp. 512–518.

    Article  PubMed  Google Scholar 

  • Demidova, E.V., Goryachkovskaya, T.N., Malup, T.K., Bannikova, S.V., Semenov, A.I., Vinokurov, N.A., Kolchanov, N.A., Popik, V.M., and Peltek, S.E., Studying the non-thermal effects of terahertz radiation on E. coli/pkatG-GFP biosensor cells, Bioelectromagnetics, 2013, vol. 34, no. 1, pp. 15–21.

    Article  CAS  PubMed  Google Scholar 

  • Demidova, E.V., Goryachkovskaya, T.N., Mescheryakova, I.A., Malup, T.K., Semenov, A.I., Vinokurov, N.A., Kolchanov, N.A., Popik, V.M., and Peltek, S.E., Impact of terahertz radiation on stress-sensitive genes of E. coli cell, IEEE Trans. Terahertz Sci. Technol., 2016, vol. 6, no. 3, pp. 435–441. doi 10.1109/TTHZ.2016.2532344

    Article  Google Scholar 

  • Devyatkov, N.D. and Betskii, O.V., Osobennosti vzaimodeistviya millimetrovogo izlucheniya nizkoi intensivnosti s biologicheskimi ob”ektami. Primenenie millimetrovogo izlucheniya nizkoi intensivnosti v biologii i meditsine (Features of Interaction of Low-Intensity Millimeter Radiation with Biological Objects. The Use of Low-Intensity Millimeter Radiation in Biology and Medicine), Moscow, 1985, pp. 6–20.

    Google Scholar 

  • Devyatkov, N.D. and Golant, M.B., On the informational essence of non-thermal and some energy effects of electromagnetic oscillations on a living organism, Pis’ma Zh. Tekh. Fiz., 1982, vol. 8, no. 1, pp. 39–41.

    Google Scholar 

  • Devyatkov, N.D., Betskii, O.V., Il’ina, S.A., and Putvinskii, A.B., Vliyanie millimetrovogo izlucheniya nizkoi intensivnosti na ionnuyu pronitsaemost’ membran eritrotsitov. Effekty neteplovogo vozdeistviya millimetrovogo izlucheniya na biologicheskie ob”ekty (Effect of Low-Intensity Millimeter Radiation on the Ion Permeability of Erythrocyte Membranes. Effects of Nonthermal Exposure to Millimeter Radiation on Biological Objects), Devyatkov, N.D., Ed., Moscow: IRE AN SSSR, 1983a, pp. 78–96.

    Google Scholar 

  • Devyatkov, N.D., Betskii, O.V., Zavizion, V.A., Kudryashova, V.A., and Khurgin, Yu.I., Absorption of electromagnetic radiation of the MM range of wavelengths and negative hydration in aqueous solutions of urea, Dokl. AN SSSR, 1982, vol. 264, no. 6, pp. 1409–1411.

    CAS  Google Scholar 

  • Devyatkov, N.D., Golant, M.B., and Tager, A.C., The role of synchronization in the action of weak electromagnetic signals of the millimeter wave band on living organisms, Biofizika, 1983b, vol. 28, no. 5, pp. 895–896.

    Google Scholar 

  • Finney, L.A. and O’Halloran, T.V., Transition metal speciation in the cell: Insights from the chemistry of metal ion receptors, Science, 2003, vol. 300, no. 5621, pp. 931–936.

    Article  CAS  PubMed  Google Scholar 

  • Flint, D.H., Tuminello, J.F., and Emptage, M.H., The inactivation of Fe-S cluster containing hydrolyases by superoxide, J. Biol. Chem., 1993, vol. 268, no. 30, pp. 22369–22376.

    CAS  PubMed  Google Scholar 

  • Fröhlich, H., What are non-thermal electric biological effects?, Bioelectromagnetics, 1982, vol. 3, no. 1, pp. 45–46.

    Article  PubMed  Google Scholar 

  • Franke, S., Grass, G., Rensing, C., and Nies, D.H., Molecular analysis of the copper-transporting efflux system CusCFBA of Escherichia coli, J. Bacteriol., 2003, vol. 185, no. 13, pp. 3804–3812.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fung, D.K., Lau, W.Y., Chan, W.T., and Yan, A., Copper efflux is induced during anaerobic amino acid limitation in Escherichia coli to protect iron-sulfur cluster enzymes and biogenesis, J. Bacteriol., 2013, vol. 195, no. 20, pp. 4556–4568.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • González-Flecha, B. and Demple, B., Genetic responses to free radicals. Homeostasis and gene control, Ann. N.Y. Acad. Sci., 2000, vol. 899, pp. 69–87.

    Article  PubMed  Google Scholar 

  • González-Flecha, B. and Demple, B., Metabolic sources of hydrogen peroxide in aerobically growing Escherichia coli, J. Biol. Chem., 1995, vol. 270, pp. 13681–13687.

    Article  PubMed  Google Scholar 

  • Grass, G. and Rensinq, C., Genes involved in copper homeostasis in Escherichia coli, J. Bacteriol., 2001, vol. 183, no. 6, pp. 2145–2147.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grass, G., Thakali, K., Klebba, P.E., Thieme, D., Müller, A., Wildner, G.F., and Rensing, C., Linkage between catecholate siderophores and the multicopper oxidase CueO in Escherichia coli, J. Bacteriol., 2004, vol. 186, no. 17, pp. 5826–5833.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grkovic, S., Brown, M.H., and Skurray, R.A., Regulation of bacterial drug export systems, Microbiol. Mol. Biol. Rev., 2002, vol. 66, no. 4, pp. 671–701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gutteridge, J.M. and Halliwell, B., Comments on review of free radicals in biology and medicine (2nd ed.), Free Radic. Biol. Med., 1992, vol. 12, no. 1, pp. 93–95.

    Article  CAS  PubMed  Google Scholar 

  • Hakkila, K., Maksimow, M., Karp, M., and Virta, M., Reporter genes lucff, luxCDABE, gfp, and dsred have different characteristics in whole-cell bacterial sensors, Anal. Biochem., 2002, vol. 301, no. 2, pp. 235–242.

    Article  CAS  PubMed  Google Scholar 

  • Helsel, M.E. and Franz, K.J., Pharmacological activity of metal binding agents that alter copper bioavailability, Dalton Trans., 2015, vol. 44, no. 19, pp. 8760–8770.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hengge-Aronis, R., Interplay of global regulators and cell physiology in the general stress response of Escherichia coli, Curr. Opin. Microbiol., 1999, vol. 2, no. 2, pp. 148–152.

    Article  CAS  PubMed  Google Scholar 

  • Hengge-Aronis, R., Signal transduction and regulatory mechanisms involved in control of the σS (RpoS) subunit of RNA polymerase, Microbiol. Mol. Biol. Rev., 2002, vol. 66, no. 3, pp. 373–395.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Henle, E.S., Han, Z., Nang, N., Rai, P., and Luo, Y., Sequence-specific DNA cleavage by Fe2+-mediated Fenton reactions has possible biological implications, J. Biol. Chem., 1999, vol. 274, no. 2, pp. 962–971.

    Article  CAS  PubMed  Google Scholar 

  • Hidalgo, E. and Demple, B., An iron-sulfur center essential for transcriptional activation by the redox-sensing SoxR protein, EMBO J., 1994, vol. 13, no. 1, pp. 138–146.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hidalgo, E., Bollinger, J.M.,Jr., Bradley, T.M., Walsh, C.T., and Demple, B., Binuclear [2Fe-2S] clusters in the Escherichia coli SoxR protein and role of the metal centers in transcription, J. Biol. Chem., 1995, vol. 270, no. 36, pp. 20908–20914.

    Article  CAS  PubMed  Google Scholar 

  • Imlay, J.A. and Linn, S., DNA damage and oxygen radical toxicity, Science, 1988, vol. 240, pp. 1302–1309.

    Article  CAS  PubMed  Google Scholar 

  • Imlay, K.R. and Imlay, J.A., Cloning and analysis of sodC, encoding the copper-zinc superoxide dismutase of Escherichia coli, J. Bacteriol., 1996, vol. 178, no. 9, pp. 2564–2571.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jang, S. and Imlay, J.A., Micromolar intracellular hydrogen peroxide disrupts metabolism by damaging iron-sulfur enzymes, J. Biol. Chem., 2007, vol. 282, no. 2, pp. 929–937.

    Article  CAS  PubMed  Google Scholar 

  • Khlebodarova, T.M., How cells protect themselves against stress?, Russ. J. Genet., 2002, vol. 38, no. 4, pp. 437–452.

    Article  CAS  Google Scholar 

  • Khlebodarova, T.M., Tikunova, N.V., Kachko, A.V., Stepanenko, I.L., Podkolodny, N.L., and Kolchanov, N.A., Application of bioinformatics resources for genosensor design, J. Bioinf. Comput. Biol., 2007, vol. 5, no. 2B, pp. 931–938.

    Article  Google Scholar 

  • Kullik, I., Stevens, J., Toledano, M.B., and Storz, G., Mutational analysis of the redox-sensitive transcriptional regulator OxyR: Regions important for DNA binding and multimerization, J. Bacteriol., 1995, vol. 177, no. 5, pp. 1285–1291.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liochev, S.I. and Fridovich, I., The role of in the production of HO: in vitro and in vivo, Free Radic. Biol. Med., 1994, vol. 16, no. 1, pp. 29–33.

    Article  CAS  PubMed  Google Scholar 

  • Loewen, P.C., Hu, B., Strutinsky, J., and Sparling, R., Regulation in the rpoS regulon of Escherichia coli, Can. J. Microbiol., 1998, vol. 44, no. 8, pp. 707–717.

    Article  CAS  PubMed  Google Scholar 

  • Lomovskaya, O., Lewis, K., and Matin, A., EmrR is a negative regulator of the Escherichia coli multidrug resistance pump EmrAB, J. Bacteriol., 1995, vol. 177, no. 9, pp. 2328–2334.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lushchak, V.I., Environmentally induced oxidative stress in aquatic animals, Aquat. Toxicol., 2011, vol. 101, no. 1, pp. 13–30.

    Article  CAS  PubMed  Google Scholar 

  • Macomber, L. and Imlay, J.A., The iron-sulfur clusters of dehydratases are primary intracellular targets of copper toxicity, Proc. Natl. Acad. Sci. U.S.A., 2009, vol. 106, no. 20, pp. 8344–8349.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Macomber, L., Rensing, C., and Imlay, J.A., Intracellular copper does not catalyze the formation of oxidative DNA damage in Escherichia coli, J. Bacteriol., 2007, vol. 189, no. 5, pp. 1616–1626.

    Article  CAS  PubMed  Google Scholar 

  • Miller, P.F. and Sulavik, M.C., Overlaps and parallels in the regulation of intrinsic multiple-antibiotic resistance in Escherichia coli, Mol. Microbiol., 1996, vol. 21, no. 3, pp. 441–448.

    Article  CAS  PubMed  Google Scholar 

  • Morona, R., Manning, P.A., and Reeves, P., Identification and characterization of the TolC protein, an outer membrane protein from Escherichia coli, J. Bacteriol., 1983, vol. 153, no. 2, pp. 693–699.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nies, D.H., Microbial heavy-metal resistance, Appl. Microbiol. Biotechnol., 1999, vol. 51, no. 6, pp. 730–750.

    Article  CAS  PubMed  Google Scholar 

  • Nunoshiba, T., DeRojas-Walker, T., Tannenbaum, S.R., and Demple, B., Roles of nitric oxide in inducible resistance of Escherichia coli to activated murine macrophages, Infect. Immun., 1995, vol. 63, no. 3, pp. 794–798.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Outten, F.W., Huffman, D.L., Hale, J.A., and O’Halloran, T.V., The independent cue and cus systems confer copper tolerance during aerobic and anaerobic growth in Escherichia coli, J. Biol. Chem., 2001, vol. 276, no. 33, pp. 30670–30677.

    Article  CAS  PubMed  Google Scholar 

  • Outten, F.W., Outten, C.E., Hale, J., and O’Halloran, T.V., Transcriptional activation of an Escherichia coli copper efflux regulon by the chromosomal MerR homologue, cueR, J. Biol. Chem., 2000, vol. 275, no. 40, pp. 31024–31029.

    Article  CAS  PubMed  Google Scholar 

  • Park, S. and Imlay, J.A., High levels of intracellular cysteine promote oxidative DNA damage by driving the Fenton reaction, J. Bacteriol., 2003, vol. 185, no. 6, pp. 1942–1950.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park, S., You, X., and Imlay, J.A., Substantial DNA damage from submicromolar intracellular hydrogen peroxide detected in Hpx-mutants in Escherichia coli, Proc. Natl. Acad. Sci. U.S.A., 2005, vol. 102, no. 26, pp. 9317–9322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pena, M.M., Lee, J., and Thiele, D.J., A delicate balance: Homeostatic control of copper uptake and distribution, J. Nutr., 1999, vol. 129, no. 7, pp. 1251–1260.

    CAS  PubMed  Google Scholar 

  • Petersen, C. and Moller, L.B., Control of copper homeostasis in Escherichia coli by a P-type ATPase, CopA, and a MerR-like transcriptional activator, CopR, Gene, 2000, vol. 261, no. 2, pp. 289–298.

    Article  CAS  PubMed  Google Scholar 

  • Pomposiello, P.J. and Demple, B., Redox-operated genetic switches: The SoxR and OxyR transcription factors, Trends Biotechnol., 2001, vol. 19, no. 3, pp. 109–114.

    Article  CAS  PubMed  Google Scholar 

  • Putman, M., van Veen, H.W., and Konings, W.N., Molecular properties of bacterial multidrug transporters, Microbiol. Mol. Biol. Rev., 2000, vol. 64, no. 4, pp. 672–693.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rademacher, C. and Masepohl, B., Copper-responsive gene regulation in bacteria, Microbiology, 2012, vol. 158, no. 10, pp. 2451–2464. doi 10.1099/mic.0.058487-0

    Article  CAS  PubMed  Google Scholar 

  • Ramseier, T.M., Bledig, S., Michotey, V., Feghali, R., and Saier, M.H., The global regulatory protein FruR modulates the direction of carbon flow in Escherichia coli, Mol. Microbiol., 1995, vol. 16, no. 6, pp. 1157–1169.

    Article  CAS  PubMed  Google Scholar 

  • Rensing, C., Ghosh, M., and Rosen, B., Families of softmetal-ion-transporting ATPases, J. Bacteriol., 1999, vol. 181, no. 9, pp. 5891–5897.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rowley, D.A. and Halliwell, B., Superoxide-dependent formation of hydroxyl radicals from NADH and NADPH in the presence of iron salts, FEBS Lett., 1982, vol. 142, no. 1, pp. 39–41.

    Article  CAS  PubMed  Google Scholar 

  • Saier, M.H. and Ramseier, T.M., The catabolite repressor/activator (Cra) protein of enteric bacteria, J. Bacteriol., 1996, vol. 178, no. 12, pp. 3411–3417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saier, M.H., Cyclic AMP-independent catabolite repression in bacteria, FEMS Microbiol. Letts., 1996, vol. 138, nos. 2–3, pp. 97–103.

    Article  CAS  Google Scholar 

  • Sakamoto, A., Terui, Y., Yoshida, T., Yamamoto, T., Suzuki, H., Yamamoto, K., Ishihama, A., Igarashi, K., and Kashiwagi, K., Three members of polyamine modulon under oxidative stress conditions: Two transcription factors (SoxR and EmrR) and a glutathione synthetic enzyme (GshA), PLoS One, 2015, vol. 10, no. 4. doi 10.1371/journal.pone.0124883

    Google Scholar 

  • Seoane, A.S. and Levy, S.B., Characterization of MarR, the repressor of the multiple antibiotic resistance (mar) operon in Escherichia coli, J. Bacteriol., 1995, vol. 177, no. 12, pp. 3414–3419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Storz, G., Tartaglia, L.A., and Ames, B.N., Transcriptional regulator of oxidative stress-inducible genes: Direct activation by oxidation, Science, 1990, vol. 248, no. 4952, pp. 189–194.

    Article  CAS  PubMed  Google Scholar 

  • Tao, K., Fujita, N., and Ishihama, A., Involvement of the RNA polymerase alpha subunit C-terminal region in cooperative interaction and transcriptional activation with OxyR protein, Mol. Microbiol., 1993, vol. 7, no. 6, pp. 859–864.

    Article  CAS  PubMed  Google Scholar 

  • Thieme, D., Neubauer, P., Nies, D.H., and Grass, G., Sandwich hybridization assay for sensitive detection of dynamic changes in mRNA transcript levels in crude Escherichia coli cell extracts in response to copper ions, Appl. Environ. Microbiol., 2008, vol. 74, no. 24, pp. 7463–7470.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas, C., Mackey, M.M., Diaz, A.A., and Cox, D.P., Hydroxyl radical is produced via the Fenton reaction in submitochondrial particles under oxidative stress: Implications for diseases associated with iron accumulation, Redox Rep., 2009, vol. 14, no. 3, pp. 102–108.

    Article  CAS  PubMed  Google Scholar 

  • Tsaneva, I.R. and Weiss, B., SoxR, a locus governing a superoxide response regulon in Escherichia coli K-12, J. Bacteriol., 1990, vol. 172, no. 8, pp. 4197–4205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woodmansee, A.N. and Imlay, J.A., Reduced flavins promote oxidative DNA damage in nonrespiring Escherichia coli by delivering electrons to intracellular free iron, J. Biol. Chem., 2002, vol. 277, no. 37, pp. 34055–34066.

    Article  CAS  PubMed  Google Scholar 

  • Wu, J., Dunham, W.R., and Weiss, B., Overproduction and physical characterization of SoxR, a [2Fe–2S] protein that governs an oxidative response regulon in Escherichia coli, J. Biol. Chem., 1995, vol. 270, no. 17, pp. 10323–10327.

    Article  CAS  PubMed  Google Scholar 

  • Xiong, A., Gottman, A., Park, C., Baetens, M., Pandza, S., and Matin, A., The EmrR protein represses the Escherichia coli emrRAB multidrug resistance operon by directly binding to its promoter region, Antimicrob. Agents Chemother., 2000, vol. 44, no. 10, pp. 2905–2907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamamoto, K. and Ishihama, A., Transcriptional response of Escherichia coli to external copper, Mol. Microbiol., 2005, vol. 56, no. 1, pp. 215–227.

    Article  CAS  PubMed  Google Scholar 

  • Yoshida, M., Kashiwagi, K., Shigemasa, A., Taniguchi, S., Yamamoto, K., Makinoshima, H., Ishihama, A., and Igarashi, K., A unifying model for the role of polyamines in bacterial cell growth, the polyamine modulo, J. Biol. Chem., 2004, vol. 279, no. 44, pp. 46008–46013.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, A., Altuvia, S., Tiwari, A., Argaman, L., Hengge-Aronis, R., and Storz, G., The OxyS regulatory RNA represses rpoS translation and binds the Hfq (HF-I) protein, EMBO J., 1998, vol. 17, no. 20, pp. 6061–6068.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, Z., Aboulwafa, M., and Saier, M.H., Regulation of crp gene expression by the catabolite repressor/activator, Cra, in Escherichia coli, J. Mol. Microbiol. Biotechnol., 2014, vol. 24, no. 3, pp. 135–141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng, M., Doan, B., Schneider, T.D., and Storz, G., OxyR and SoxRS regulation of fur, J. Bacteriol., 1999, vol. 181, no. 15, pp. 4639–4643.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng, M., Wang, X., Templeton, L.J., Smulski, D.R., LaRossa, R.A., and Storz, G., DNA microarray-mediated transcriptional profiling of the Escherichia coli response to hydrogen peroxide, J. Bacteriol., 2001, vol. 183, pp. 4562–4570.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. E. Peltek.

Additional information

Original Russian Text © S.E. Peltek, E.V. Demidova, V.M. Popik, T.N. Goryachkovskaya, 2016, published in Vavilovskii Zhurnal Genetiki i Selektsii, 2016, Vol. 20, No. 6, pp. 876–886.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peltek, S.E., Demidova, E.V., Popik, V.M. et al. Stress-induced systems in Escherichia coli and their response to terahertz radiation. Russ J Genet Appl Res 7, 858–868 (2017). https://doi.org/10.1134/S2079059717080019

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079059717080019

Keywords

Navigation