Skip to main content
Log in

Efficiency of olfactory transport of manganese (II) oxide nanoparticles with single or multiple intranasal administration

  • Published:
Russian Journal of Genetics: Applied Research

Abstract

In experiments in which nano-sized metal oxide particles are multiply administered through inhalation, the absence of a material correlation between the number of they are administered and the metal concentration in olfactory bulbs (OBs) is demonstrated. This circumstance raises the question about a possible decrease in the efficiency of the capture of solid particles by the olfactory epithelium when they are repeatedly introduced in the nasal cavity. In this work, the efficiency of the nasal transport of magneto-contrasting nanoparticles during single and multiple intranasal administration is compared and their effect on the morphofunctional characteristics of the olfactory system is estimated. According to the data obtained, the accumulation of MnO-NP in the OBs of mice decreases during their repeated intranasal application. In addition, the decrease in the efficiency of the olfactory transport (observed during the multiple introduction of MnONP) partially recovers during the intranasal application of a mucolytic agent (0.01 M N-acetyl-L-cysteine). Moreover, the concentration of particles in OBs was proportional to the volume of this structure, which particularly depends on the number of synaptic contacts between the OBs and the olfactory epithelium. It should be noted that the olfactory epithelium’s thickness decreases during the multiple introduction of MnO-NP in mice. Thus, the efficiency of the olfactory transport of nanoparticles from the nasal cavity to the brain decreases during the multiple intranasal introduction of MnO-NP; this is combined with an increase in the mucosal layer’s viscosity and a decrease in the number of synaptic contacts between the OBs and the olfactory epithelium. The results obtained indicate the presence of the natural protection mechanisms of the olfactory epithelium against the penetration of pathogens and xenobiotics and allows us to formulate specific practical recommendations concerning the intranasal application of medications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bartsch, W.G.K.G., Sponer, G., Dietmann, K., and Fuchs, G., Acute toxicity of various solvents in the mouse and rat. LD50 of ethanol, diethylacetamide, dimethylformamide, dimethylsulfoxide, glycerine, N-me-thylpyrrolidone, polyethylene glycol 400, 1, 2-propanediol and tween 20, Arzneimittel-Forschung, 1975, vol. 26, no. 8, pp. 1581–1583.

    Google Scholar 

  • Bhatnagar, K.P., Kennedy, R.C., Baron, G., and Greenberg, R.A., Number of mitral cells and the bulb volume in the aging human olfactory bulb: A quantitative morphological study, Anat. Rec., 1987, vol. 218, no. 1, pp. 73–87.

    Article  CAS  PubMed  Google Scholar 

  • Calderón-Garcidueñas, L., Franco-Lira, M., Mora-Tiscareno, A., Medina-Cortina, H., Torres-Jardon, R., and Kavanaugh, M., Early Alzheimer’s and Parkinson’s disease pathology in urban children: Friend versus foe responses–it is time to face the evidence, BioMed Res. Int., 2013, vol. 2013, p. 161687.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chattopadhyay, S., Dash, S.K., Tripathy, S., Das, B., Mandal, D., Pramanik, P., and Roy, S., Toxicity of cobalt oxide nanoparticles to normal cells; an in vitro and in vivo study, Chem.-Biol. Interact., 2015, vol. 226, pp. 58–71.

    Article  CAS  PubMed  Google Scholar 

  • Cone, R.A., Barrier properties of mucus, Adv. Drug Delivery Rev., 2009, vol. 61, no. 2, pp. 75–85.

    Article  CAS  Google Scholar 

  • Elder, A., Gelein, R., Silva, V., Feikert, T., Opanashuk, L., Carter, J., Potter, R., Maynard, A., Ito, Y., Finkelstein, J., and Oberdorster, G., Translocation of inhaled ultrafine manganese oxide particles to the central nervous system, Environ. Health Perspect., 2006, vol. 114, no. 8, pp. 1172–1178.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Evdokov, O.V., Titov, V.M., Tolochko, B.P., and Sharafutdinov, M.R., In situ time-resolved diffractometry at SSTRC, Nucl. Instrum. Methods Phys. Res. A, 2009, vol. 603, no. 1, pp. 194–195.

    Article  CAS  Google Scholar 

  • Faber, H.K., Silverberg, R.J., and Dong, L., Poliomyelitis in the cynomolgus monkey, J. Exp. Med., 1944, vol. 80, no. 1, pp. 39–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harkin, A., Kelly, J.P., and Leonard, B.E., A review of the relevance and validity of olfactory bulbectomy as a model of depression, Clin. Neurosci. Res., 2003, vol. 3, nos. 4–5, pp. 253–262.

    Article  Google Scholar 

  • Hurtt, M.E., Thomas, D.A., Working, P.K., Monticello, T.M., and Morgan, K.T., Degeneration and regeneration of the olfactory epithelium following inhalation exposure to methyl bromide: Pathology, cell kinetics, and olfactory function, Toxicol. Appl. Pharmacol., 1988, vol. 94, no. 2, pp. 311–328.

    Article  CAS  PubMed  Google Scholar 

  • Hussain, S.M., Javorina, A.K., Schrand, A.M., Duhart, H.M., Ali, S.F., and Schlager, J.J., The interaction of manganese nanoparticles with PC-12 cells induces dopamine depletion, Toxicol. Sci., 2006, vol. 92, no. 2, pp. 456–463.

    Article  CAS  PubMed  Google Scholar 

  • Kim, Y.S. and Ho, S.B., Intestinal goblet cells and mucins in health and disease: Recent insights and progress, Curr. Gastroenterol. Rep., 2010, vol. 12, no. 5, pp. 319–330.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kitson, C., Angel, B., Judd, D., Rothery, S., Severs, N., Dewar, A., Huang, L., Wadsworth, S., Cheng, S., and Geddes, D., The extra-and intracellular barriers to lipid and adenovirus-mediated pulmonary gene transfer in native sheep airway epithelium, Gene Ther., 1999, vol. 6, no. 4, pp. 534–546.

    Article  CAS  PubMed  Google Scholar 

  • Matulionis, D.H., Ultrastructural study of mouse olfactory epithelium following destruction by ZnSO4 and its subsequent regeneration, Am. J. Anat., 1975, vol. 142, no. 1, pp. 67–89.

    Article  CAS  PubMed  Google Scholar 

  • Mesholam, R., Moberg, P., Mahr, R., and Doty, R., Olfaction in neurodegenerative disease: A meta-analysis of olfactory functioning in Alzheimer’s and Parkinson’s diseases, Arch. Neurol., 1998, vol. 55, no. 1, pp. 84–90.

    Article  CAS  PubMed  Google Scholar 

  • Mikloska, Z., Sanna, P.P., and Cunningham, A.L., Neutralizing antibodies inhibit axonal spread of herpes simplex virus type 1 to epidermal cells in vitro, J. Virol., 1999, vol. 73, no. 7, pp. 5934–5944.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Minoshima, S. and Cross, D., In vivo imaging of axonal transport using MRI: Aging and Alzheimer’s disease, Eur. J. Nucl. Med. Mol. Imaging, 2008, vol. 35, no. 1, pp. 89–92.

    Article  Google Scholar 

  • Mistry, A., Glud, S.Z., Kjems, J., Randel, J., Howard, K.A., Stolnik, S., and Illum, L., Effect of physicochemical properties on intranasal nanoparticle transit into murine olfactory epithelium, J. Drug Targeting, 2009, vol. 17, no. 7, pp. 543–552.

    Article  CAS  Google Scholar 

  • Moshkin, M., Petrovski, D., Akulov, A., Romashchenko, A., Gerlinskaya, L., Ganimedov, V., Muchnaya, M., Sadovsky, A., Koptyug, I., and Savelov, A., Nasal aerodynamics protects brain and lung from inhaled dust in subterranean diggers, Ellobius talpinus, Proc. R. Soc. B: Biol. Sci., 2014, vol. 281, nos. 1792, p. 20140919.

    Article  Google Scholar 

  • Oberdorster, G., Sharp, Z., Atudorei, V., Elder, A., Gelein, R., Kreyling, W., and Cox, C., Translocation of inhaled ultrafine particles to the brain, Inhalation Toxicol., 2004, vol. 16, nos. 6–7, pp. 437–445.

    Article  CAS  Google Scholar 

  • Olmsted, S.S., Padgett, J.L., Yudin, A.I., Whaley, K.J., Moench, T.R., and Cone, R.A., Diffusion of macromolecules and virus-like particles in human cervical mucus, Biophys. J., 2001, vol. 81, no. 4, pp. 1930–1937.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pautler, R.G. and Koretsky, A.P., Tracing odor-induced activation in the olfactory bulbs of mice using manganeseenhanced magnetic resonance imaging, NeuroImage, 2002, vol. 16, no. 2, pp. 441–448.

    Article  PubMed  Google Scholar 

  • Royet, J.P., Souchier, C., Jourdan, F., and Ploye, H., Morphometric study of the glomerular population in the mouse olfactory bulb: Numerical density and size distribution along the rostrocaudal axis, J. Comp. Neurol., 1988, vol. 270, no. 4, pp. 559–568.

    Article  CAS  PubMed  Google Scholar 

  • Schellinck, H.M., Rooney, E., and Brown, R.E., Odors of individuality of germfree mice are not discriminated by rats in a habituation-dishabituation procedure, Physiol. Behav., 1995, vol. 57, no. 5, pp. 1005–1008.

    Article  CAS  PubMed  Google Scholar 

  • Sherry Chow, H.H., Zhi, C., and Matsuura, T., Direct transport of cocaine from the nasal cavity to the brain following intranasal cocaine administration in rats, J. Pharmaceut. Sci., 1999, vol. 88, no. 8, pp. 754–758.

    Article  Google Scholar 

  • Verkman, A.S., Song, Y., and Thiagarajah, J.R., Role of airway surface liquid and submucosal glands in cystic fibrosis lung disease, Am. J. Physiol. Cell Physiol., 2003, vol. 284, no. 1, pp. C2–C15.

    Article  CAS  PubMed  Google Scholar 

  • Wang, J., Liu, Y., Jiao, F., Lao, F., Li, W., Gu, Y., Li, Y., Ge, C., Zhou, G., Li, B., Zhao, Y., Chai, Z., and Chen, C., Time-dependent translocation and potential impairment on central nervous system by intranasally instilled TiO2 nanoparticles, Toxicology, 2008, vol. 254, nos. 1–2, pp. 82–90.

    Article  CAS  PubMed  Google Scholar 

  • Wu, J., Wang, C., Sun, J., and Xue, Y., Neurotoxicity of silica nanoparticles: Brain localization and dopaminergic neurons damage pathways, ACS Nano, 2011, vol. 5, no. 6, pp. 4476–4489.

    Article  CAS  PubMed  Google Scholar 

  • Xia, S. and Xu, S., Improved assay of coenzyme Q10 from liposomes by Tween 80 solubilisation and UV spectrophotometry, J. Sci. Food Agr., 2006, vol. 86, no. 13, pp. 2119–2127.

    Article  CAS  Google Scholar 

  • Yu, L.E., Lanry, Yung L.Y., Ong, C.N., Tan, Y.L., Suresh Balasubramaniam, K., Hartono, D., Shui, G., Wenk, M.R., and Ong, W.Y., Translocation and effects of gold nanoparticles after inhalation exposure in rats, Nanotoxicology, 2007, vol. 1, no. 3, pp. 235–242.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Romashchenko.

Additional information

Original Russian Text © A.V. Romashchenko, M.B. Sharapova, D.V. Petrovskii, M.P. Moshkin, 2017, published in Vavilovskii Zhurnal Genetiki i Selektsii, 2017, Vol. 21, No. 3, pp. 304–311.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romashchenko, A.V., Sharapova, M.B., Petrovskii, D.V. et al. Efficiency of olfactory transport of manganese (II) oxide nanoparticles with single or multiple intranasal administration. Russ J Genet Appl Res 7, 789–797 (2017). https://doi.org/10.1134/S2079059717070061

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079059717070061

Keywords

Navigation