Skip to main content
Log in

Dependence of a DNA globule size in a gas phase on the chain length

  • Published:
Russian Journal of Genetics: Applied Research

Abstract

Modern trends in the use of DNA in nanotechnology and biotechnology are aiming to develop new methods of analysis of DNA molecules based on the developing instrument base. We have developed a method of mild nondestructive ablation to transfer DNA molecules into an aerosol phase using terahertz radiation. In this paper, the size of DNA nanoparticles in the gas phase was measured using the diffusion aerosol spectrometer.?The changes taking place with DNA in the gas phase were visualized using the atomic force microscopy (AFM). A comparison of the measurements of the diffusion sizes of the plasmid pUC18 aerosol particles with measurements using AFM gives grounds to assume that the process of condensation of the DNA molecules takes place in the gas phase. A model was constructed according to modern concepts of the process of DNA condensation and formation of globules. The theoretical calculations are in good agreement with the experimental results. The experimentally estimated persistence length of the DNA in the gas phase was about 0.5 nm, which indicates the absence of a distributed charge on the surface of the DNA in the gas phase and the nonionizing nature of terahertz radiation. The study of DNA conformation in the gas phase will expand knowledge of DNA compaction in natural and artificial conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ankilov, A.N., Baklanov, A.M., Kozlov, A.S., and Malyshkin, S.B., Determination of concentrations of aerosolforming substances in the atmosphere, Opt. Atmos. Okeana, 2000, vol. 13, no. 6–7, pp. 644–647.

    Google Scholar 

  • Barbara, A., Shehadeh-Masha’our, R., and Garzozi, H.J., Laser ablation in eyes with congenital nystagmus, J. Refract. Surg., 2007, vol. 23, no. 6, pp. 623–625.

    PubMed  Google Scholar 

  • Baumann, C.G., Smith, S.B., Bloomfield, V.A., and Bustamante, C., Ionic effects on the elasticity of single DNA molecules, Proc. Natl. Acad. Sci. USA, 1997, vol. 94, pp. 6185–6190.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bloomfield, V.A., DNA condensation, Curr. Opin. Struct. Biol., 1996, vol. 6, no. 3, pp. 334–341.

    Article  CAS  PubMed  Google Scholar 

  • Conwell, C.C., Vilfan, I.D., and Hud, N.V., Controlling the size of nanoscale toroidal DNA condensates with static curvature and ionic strength, Proc. Natl. Acad. Sci. USA, 2003, vol. 100, no. 16, pp. 9296–9301.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Flori, P.D., Statisticheskaya mekhanika tsepnykh molekul (Statistical Mechanics of Chain Molecules), Moscow, 1971.

    Google Scholar 

  • Gavrilov, N.G., Knyazev, B.A., Kolobanov, E.I., et al., Status of the Novosibirsk high-power terahertz FEL, Nucl. Instr. Methods Phys. Res. Sec. A, 2007, vol. 575, nos. 1/2, pp. 54–57.

    Article  CAS  Google Scholar 

  • Hagerman, P.J., Flexibility of DNA, Ann. Rev. Biophys. Biophys. Chem., 1988, vol. 17, pp. 265–286.

    Article  CAS  Google Scholar 

  • Khokhlov, A.R. and Kuchanov, S.I., Lektsii po fizicheskoi khimii polimerov (Lectures on Physical Chemistry of Polymers), Moscow, 2000.

    Google Scholar 

  • Klimenko, S.M., Tikchonenko, T.I., and Andreev, V.M., Packing of DNA in the head of bacteriophage T2, J. Mol. Biol., 1967, vol. 23, no. 3, pp. 523–533.

    Article  CAS  PubMed  Google Scholar 

  • Libenson, M.N., Shandybina, G.D., and Shakhmin, A.L., Chemical analysis of ablation products on a nanosecond range, Zh. Tekhn. Fiz., 2000, vol. 70, no. 9, pp. 124–127.

    Google Scholar 

  • Lyubchenko, Y.L. and Shlyakhtenko, L.S., AFM for analysis of structure and dynamics of DNA and protein–DNA complexes, Methods, 2009, vol. 47, no. 3, pp. 206–213.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Manning, G.S., The molecular theory of polyelectrolyte solutions with applications to the electrostatic properties of polynucleotides, Q. Rev. Biophys., 1978, vol. 11, pp. 179–246.

    Article  CAS  PubMed  Google Scholar 

  • Mazur, A.K., Evaluation of elastic properties of atomistic DNA models, Biophysical J., 2006, vol. 91, pp. 4507–4518.

    Article  CAS  Google Scholar 

  • Murphy, L.D. and Zimmerman, S.B., Condensation and cohesion of lambda DNA in cell extracts and other media: implications for the structure and function of DNA in prokaryotes, Biophys. Chem., 1995, vol. 57, no. 1, pp. 71–92.

    Article  CAS  PubMed  Google Scholar 

  • Neidle, S., DNA Structure and Recognition, Oxford: IRL Press, 1994.

    Google Scholar 

  • Pel’tek, S.E., Popik, V.M., Goryachkovskaya, T.N., Mordvinov, V.A., and Petrov, A.K., RF Patent No. 2410439, 2009.

    Google Scholar 

  • Piacenza, M. and Grimme, S., Systematic quantum chemical study of DNA-base tautomers, J. Comput. Chem., 2004, vol. 25, no. 1, pp. 83–99.

    Article  CAS  PubMed  Google Scholar 

  • Post, C.B. and Zimm, B.H., Internal condensation of a single DNA molecule, Biopolymers, 1979, vol. 18, pp. 1487–1501.

    Article  CAS  Google Scholar 

  • Raspaud, E., Olvera de la Cruz, M., Sikorav, J.-L., and Livolant, F., Precipitation of DNA by polyamines: a polyelectrolyte behavior, Biophysical J., 1998, vol. 74, p. 381393.

    Article  Google Scholar 

  • Rouzina, I. and Bloomfield, V., Force-induced melting of the DNA double helix 1. Thermodynamic analysis, Biophys. J., 2001, vol. 80, pp. 882–893.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rueda, M., Kalko, S.G., Luque, F.J., and Orozco, M., The structure and dynamics of DNA in the gas phase, J. Am. Chem. Soc., 2003, vol. 125, no. 26, pp. 8007–8014.

    Article  CAS  PubMed  Google Scholar 

  • Sarkar, T., Vitoc, I., Mukerji, I., and Hud, N.V., Bacterial protein HU dictates the morphology of DNA condensates produced by crowding agents and polyamines, Nucl. Acids Res., 2007, vol. 35, no. 3, pp. 951–961.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schmutz, M., Durand, D., Debin, A., et al., DNA packing in stable lipid complexes designed for gene transfer imitates DNA compaction in bacteriophage, Proc. Natl. Acad. Sci. USA, 1999, vol. 96, no. 22, pp. 12293–12298.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Senkan, S., Kahn, M., Duan, S., Ly, A., and Leidholm, C., High throughput metal nanoparticle catalysis by pulsed laser ablation, Catalysis Today, 2006, vol. 1, pp. 291–296.

    Article  Google Scholar 

  • Shotton, M.W., Pope, L.H., Forsyth, T., et al., A high-angle neutron fibre diffraction study of the hydration of deuterated ADNA, Biophys. Chem., 1997, vol. 69, pp. 85–96.

    Article  CAS  PubMed  Google Scholar 

  • Teif, V.B. and Lando, D.Yu., DNA condensation induced by ligand absorption, Mol. Biol., 2001, vol. 35, no. 1, pp. 117–119.

    Article  CAS  Google Scholar 

  • Vetoshkin, A.G. and Tarantseva, K.R., Tekhnologiya zashchity okruzhayushchei sredy (teoreticheskie osnovy) (Environmental Protection Technology (Theoretical Basis)), Pensa, 2004.

    Google Scholar 

  • Wang, W., Lin, J., and Schwartz, D., Scanning force microscopy of DNA molecules elongated by convective fluid flow in an evaporating droplet, Biophys. J., 1998, vol. 75, no. 1, pp. 513–520.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wilson, R. and Bloomfield, V., Counterion-induced condensation of deoxyribonucleic acid. A light-scattering study, Biochemistry, 1979, vol. 18, pp. 2192–2196.

    Article  CAS  PubMed  Google Scholar 

  • Zheng, J., Birktoft, J.J., Chen, Y., et al., From molecular to macroscopic via the rational design of a self-assembled 3D DNA crystal, Nature, 2009, vol. 1, pp. 74–77.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. E. Peltek.

Additional information

Original Russian Text © T.N. Goryachkovskaya, A.S. Kozlov, V.M. Popik, N.A. Kolchanov, S.E. Peltek, 2014, published in Vavilovskii Zhurnal Genetiki i Selektsii, 2014, Vol. 18, No. 4/2, pp. 1013–1021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goryachkovskaya, T.N., Kozlov, A.S., Popik, V.M. et al. Dependence of a DNA globule size in a gas phase on the chain length. Russ J Genet Appl Res 5, 394–400 (2015). https://doi.org/10.1134/S2079059715040061

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079059715040061

Keywords

Navigation