Skip to main content
Log in

On the distribution of auxin concentrations in root horizontal layer cells

  • Published:
Russian Journal of Genetics: Applied Research

Abstract

Di-, tri-, tetra-, penta-, and polyarch structures of the root’s central cylinder are distinguished in plants. The type of symmetry reflects typical mutual position of bundles of phloem and xylem vascular tissues in a cross section of the root. Mechanisms of the development of different types of symmetry in the central cylinder structure remain insufficiently studied. It is assumed that the process of differentiation is triggered and controlled by a phytohormone auxin (which acts as a morphogen) (Sachs, 1969). The model, which describes auxin transport through a unicellular cell layer of the root cross section, is presented in the work. Stationary distributions of auxin hormone concentrations (that can be established in the cross cell layer) were studied. It was demonstrated that nonlinear processes of auxin transport regulation are able to provide the existence of uneven distributions of its concentrations (that carry the target morphogenetic information on a diarch structure of the root cylinder). However, target morphogenetic fields always coexist with even distributions, in which morphogenetic information is absent. The results obtained indicate in favor of the hypothesis that uneven flow of auxin (of the appropriate configuration) from the sprout to the root can be one of the mechanisms of the development of the target distribution of auxin concentration in the cells of the root cross layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bauby, H., Divol, F., Truernit, E., et al., Protophloem differentiation in early Arabidopsis thaliana development, Plant Cell Physiol., 2007, vol. 48, pp. 97–109.

    Article  CAS  PubMed  Google Scholar 

  • Bayer, E.M., Smith, R.S., Mandel, T., et al., Integration of transport-based models for phyllotaxis and midvein formation, Genes Dev., 2009, vol. 23, pp. 373–384.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Benkova, E., Michniewicz, M., Sauer, M., et al., Local, effluxdependent auxin gradients as a common module for plant organ formation, Cell, 2003, vol. 115, pp. 591–602.

    Article  CAS  PubMed  Google Scholar 

  • Benkova, E., Ivanchenko, M.G., Friml, J., et al., A morphogenetic trigger: is there an emerging concept in plant developmental biology?, Trends Plant Sci., 2009, vol. 14, pp. 189–193.

    Article  CAS  PubMed  Google Scholar 

  • Bishopp, A., Lehesranta, S., Vaten, A., et al., Phloemtransported cytokinin regulates polar auxin transport and maintains vascular pattern in the root meristem, Curr. Biol., 2011a, vol. 21, pp. 927–932.

    Article  CAS  PubMed  Google Scholar 

  • Bishopp, A., Help, H., El-Showk, S., et al., A mutually inhibitory interaction between auxin and cytokinin specifies vascular pattern in roots, Curr. Biol., 2011b, vol. 21, pp. 917–926.

    Article  CAS  PubMed  Google Scholar 

  • Capron, A., Chatfield, S., Provart, N., and Berleth, T., Embryogenesis: pattern formation from a single cell, Arabidopsis Book, 2009, vol. 7, p. e0126.

    Article  PubMed Central  PubMed  Google Scholar 

  • Help, H., Mahonen, A.P., Helariutta, Y., and Bishopp, A., Bisymmetry in the embryonic root is dependent on cotyledon number and position, Plant Signal Behav., 2011, vol. 6, pp. 1837–1840.

    Article  PubMed Central  PubMed  Google Scholar 

  • Ibanes, M., Fabregas, N., Chory, J., and Cano-Delgado, A.I., Brassinosteroid signaling and auxin transport are required to establish the periodic pattern of Arabidopsis shoot vascular bundles, Proc. Natl. Acad. Sci. USA, 2009, vol. 106, pp. 13630–13635.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Likhoshvai, V.A., Omelyanchuk, N.A., Mironova, V.V., et al., Mathematical model of auxin distribution in the plant root, Russ. J. Dev. Biol., 2007, Vol. 38, No. 6, pp. 374–382.

    Article  CAS  Google Scholar 

  • Ljung, K., Hull, A.K., Celenza, J., et al., Sites and regulation of auxin biosynthesis in Arabidopsis roots, Plant Cell, 2005, vol. 17, pp. 1090–1104.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mironova, V.V., Omelyanchuk, N.A., Yosiphon, G., et al., A plausible mechanism for auxin patterning along the developing root, BMC Syst Biol., 2010, vol. 98, p. 98.

    Article  Google Scholar 

  • Mironova, V.V., Omelyanchuk, N.A., Novoselova, E.S., et al., Combined in silico/in vivo analysis of mechanisms providing for root apical meristem self-organization and maintenance, Ann. Bot., 2012, vol. 110, pp. 349–360.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mitchison, G.J., A model for vein formation in higher plants, Proc. R. Soc. Lond. B, 1980, vol. 207, pp. 79–109.

    Article  Google Scholar 

  • Mitchison, G.J., Hanke, D.E., and Sheldrake, A.R., The polar transport of auxin and vein patterns in plants, Phil. Trans. R. Soc. Lond. B, 1981, vol. 295, pp. 461–471.

    Article  CAS  Google Scholar 

  • Muraro, D., Wilson, M., and Bennett, M.J., Root development: cytokinin transport matters, too!, Curr. Biol., 2011, vol. 21, pp. R423–425.

    Article  CAS  PubMed  Google Scholar 

  • Muraro, D., Mellor, N., Pound, M.P., et al., Integration of hormonal signaling networks and mobile microRNAs is required for vascular patterning in Arabidopsis roots, Proc. Natl. Acad. Sci. USA, 2014, vol. 111, pp. 857–862.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Novoselova, E.S., Mironova, V.V., Omelyanchuk, N.A., et al., Mathematical modeling of auxin transport in protoxylem and protophloem of Arabidopsis thaliana root tips, J. Bioinform. Comput. Biol., 2013, vol. 11, p. 1340010.

    Article  PubMed  Google Scholar 

  • Petrasek, J. and Friml, J., Auxin transport routes in plant development, Development, 2009, Vol. 136, No. 16, pp. 2675–2688.

    Article  CAS  PubMed  Google Scholar 

  • Swarup, R., Friml, J., Marchant, A., et al., Localization of the auxin permease aux1 suggests two functionally distinct hormone transport pathways operate in the Arabidopsis root apex, Genes Dev., 2001, vol. 15, pp. 2648–2653.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vieten, A., Vanneste, S., Wisniewska, J., et al., Functional redundancy of pin proteins is accompanied by auxindependent cross-regulation of pin expression, Development, 2005, vol. 132, pp. 4521–4531.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Likhoshvai.

Additional information

Original Russian Text © E.S. Novoselova, V.V. Mironova, T.M. Khlebodarova, V.A. Likhoshvai, 2014, published in Vavilovskii Zhurnal Genetiki i Selektsii, 2014, Vol. 18, No. 4/2, pp. 953–962.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Novoselova, E.S., Mironova, V.V., Khlebodarova, T.M. et al. On the distribution of auxin concentrations in root horizontal layer cells. Russ J Genet Appl Res 5, 293–299 (2015). https://doi.org/10.1134/S2079059715030120

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079059715030120

Keywords

Navigation