Skip to main content
Log in

Relationship of Peptides and Long Non-Coding RNAs with Aging

  • Published:
Advances in Gerontology Aims and scope Submit manuscript

Abstract

The paper summarizes data on the existence of evolutionarily fixed species balance of interactions between peptides, RNA, and DNA that provide the stability of the development and functioning of tissues and organs in ontogenesis. Identification of key structures that disturb this balance with aging can become a basis for a specific targeted effect on reversible epigenetic mechanisms of their origin. Non-coding RNAs that, in addition to the function of ribozymes and effectors of RNA interference, are capable of being translated into peptides, which can be the most convenient targets. The effect of the latter on non-coding RNAs and involvement in the same biological processes can become a basis for a complex approach in the development of new geroprotective drugs. It was suggested that peculiarities of the expression of non-coding RNAs typical for a cell type and stage of development reflect transposon activation patterns (programmed at the species level) required for setting of tissue-specific gene networks. This is caused by the formation of non-coding RNAs from transposon transcripts that are regulators of the expression of protein-coding genes in successive cell divisions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Mustafin, R.N. and Khusnutdinova, E.K., The interaction of transposons with epigenetic factors in aging, Usp. Gerontol., 2017, vol. 30, no. 4, pp. 516–528.

    CAS  Google Scholar 

  2. Khavinson, V.Kh., Solovyov, A.Yu., and Shataeva, L.K., Molecular mechanism of interaction between oligopeptides and double-stranded DNA, Bull. Exp. Biol. Med., 2006, vol. 141, no. 4, pp. 457–461.

    CAS  PubMed  Google Scholar 

  3. Khavinson, V.Kh., Peptidnaya regulyatsiya stareniya (Peptide Regulation of Aging), St. Petersburg: Nauka, 2009.

  4. Abdolmohsen, K., Panda, A., Kang, M.J., et al., Senescence-associated lncRNAs: senescence-associated long noncoding RNAs, Aging Cell, 2013, vol. 12, pp. 890–900.

    Google Scholar 

  5. Abdelmohsen, K. and Gorospe, M., Noncoding RNA control of cellular senescence, Wiley Interdiscip. Rev.: RNA, 2015, vol. 6, no. 6, pp. 615–629.

    CAS  PubMed  Google Scholar 

  6. Anderson, D.M., Anderson, K.M., Chang, C.L., et al., A micropeptide encoded by a putative long noncoding RNA regulates muscle performance, Cell, 2015, vol. 160, pp. 595–606.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Aschacher T., Wolf B., Enzmann F., et al., LINE-1 induces hTERT and ensures telomere maintenance in tumour cell lines, Oncogene, 2016, vol. 35, pp. 94–104.

    CAS  PubMed  Google Scholar 

  8. Aschacher, T., Wolf, B., Aschacher, O., et al., Long interspersed element-1 ribonucleoprotein particles protect telomeric ends in alternative lengthening of telomeres dependent cells, Neoplasia, 2020, vol. 22, pp. 61–75.

    CAS  PubMed  Google Scholar 

  9. Barry, G., Guennewig, B., Fung, S., et al., Long non-coding RNA expression during aging in the human subependymal zone, Front. Neurol., 2015, vol. 6, p. 45.

    PubMed  PubMed Central  Google Scholar 

  10. Bravo, J.I., Nozownik, S., Danthi, P.S., and Benayoun, B.A., Transposable elements, circular RNAs and mitochondrial transcription in age-related genomic regulation, Development, 2020, vol. 147, pp. 175786.

    Google Scholar 

  11. Briggs, J.A., Wolvetang, E.J., Mattick, J.S., et al., Mechanisms of long non-coding RNAs in mammalian nervous system development, plasticity, disease, and evolution, Neuron, 2015, vol. 88, pp. 861–877.

    CAS  PubMed  Google Scholar 

  12. Cabili, M.N., Trapnell, C., Goff, L., et al., Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses, Genes Dev., 2011, vol. 25, no. 18, pp. 1915–1927.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Cao, Q., Wu, J., Wang, X., and Song, C., Noncoding RNAs in vascular aging, Oxid. Med. Cell. Longevity, 2020, vol. 2020, art. ID 7914957.

    Google Scholar 

  14. Cardelli, M., The epigenetic alteration of endogenous retroelements in aging, Mech. Ageing Dev., 2018, vol. 174, pp. 30–46.

    CAS  PubMed  Google Scholar 

  15. Casacuberta, E., Drosophila: retrotransposons making up telomeres, Viruses, 2017, vol. 9, p. 192.

    PubMed Central  Google Scholar 

  16. Cooper, C., Vincett, D., Yan, Y., et al., Steroid receptor RNA activator bi-faceted genetic system: heads or tails, Biochimie, 2011, vol. 93, pp. 1973–1980.

    CAS  PubMed  Google Scholar 

  17. Dong, X., Chen, K., Cuevas-Diaz Duran, R., et al., Comprehensive identification of long non-coding RNAs in purified cell types from the brain reveals functional lncRNA in OPC fate determination, PLoS Genet., 2015, vol. 11, pp. 1–26.

    Google Scholar 

  18. Ferron, S.R., Mira, H., Franco, S., et al., Telomere shortening and chromosomal instability abrogates proliferation of adult but not embryonic neural stem cells, Development, 2004, vol. 131, pp. 4059–4070.

    CAS  PubMed  Google Scholar 

  19. Ferron, S.R., Marques-Torrejon, M.A., Mira, H., et al., Telomere shortening in neural stem cells disrupts neuronal differentiation and neurogenesis, J. Neurosci., 2009, vol. 29, pp. 14394–14407.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Fico, A., Fiorenzano, A., Pascale, E., et al., Long non-coding RNA in stem cell pluripotency and lineage commitement: functions and evolutionary conservation, Cell. Mol. Life Sci., 2019, vol. 76, pp. 1459–1471.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Gerdes, P., Richardson, S.R., Mager, D.L., and Faulkner, G.J., Transposable elements in the mammalian embryo: pioneers surviving through stealth and service, Genome Biol., 2016, vol. 17, pp. 100–116.

    PubMed  PubMed Central  Google Scholar 

  22. Grammatikakis, I., Panda, A.C., Abdelmohsen, K., and Gorospe, M., Long noncoding RNAs (lncRNAs) and the molecular hallmarks of aging, Aging (Albany, NY), 2014, vol. 6, pp. 992–1009.

    Google Scholar 

  23. Guzman, H., Sanders, K., Idica, A., et al., miR-128 inhibits telomerase activity by targeting TERT mRNA, Oncotarget, 2018, vol. 9, pp. 13244–13253.

    PubMed  PubMed Central  Google Scholar 

  24. Hadjiargyrou, M. and Delihas, N., The intertwining of transposable elements and non-coding RNAs, Int. J. Mol. Sci., 2013, vol. 14, no. 7, pp. 13307–13328.

    PubMed  PubMed Central  Google Scholar 

  25. Honson, D.D. and Macfarlan, T.S., A lncRNA-like role for LINE1s in development, Dev. Cell, 2018, vol. 46, pp. 132–134.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Ingolia, N.T., Lareau, L.F., and Weissman, J.S., Ribosome profiling of mouse embryonic stem cells reveals the complexity and dynamics of mammalian proteomes, Cell, 2011, vol. 147, pp. 789–802.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Johnson, R. and Guigo, R., The RIDL hypothesis: transposable elements as functional domains of long noncoding RNAs, RNA, 2014, vol. 20, pp. 959–976.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Kapusta, A., Kronenberg, Z., Lynch, V.J., et al., Transposable elements are major contributors to the origin, diversification, and regulation of vertebrate long noncoding RNAs, PLoS Genet., 2013, vol. 9, p. e1003470.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Kelley, D. and Rinn, J., Transposable elements reveal a stem cell-specific class of long noncoding RNAs, Genome Biol., 2012, vol. 13, no. 11, p. R107.

    PubMed  PubMed Central  Google Scholar 

  30. Kondo, T., Plaza, S., Zanet, J., et al., Small peptides switch the transcriptional activity of Shavenbaby during Drosophila embryogenesis, Science, 2010, vol. 329, pp. 336–339.

    CAS  PubMed  Google Scholar 

  31. Kordyukova, M., Olovnikov, I., and Kalmykova, A., Transposon control mechanisms in telomere biology, Curr. Opin. Genet. Dev., 2018, vol. 49, pp. 56–62.

    CAS  PubMed  Google Scholar 

  32. Kour, S. and Rath, P.C., Age-dependent differential expression profile of a novel intergenic long noncoding RNA in rat brain, Int. J. Dev. Neurosci., 2015, vol. 47, pp. 286–297.

    CAS  PubMed  Google Scholar 

  33. Kour, S. and Rath, P.C., Long noncoding RNAs in aging and age-related diseases, Ageing Res. Rev., 2016, vol. 26, pp. 1–21.

    CAS  PubMed  Google Scholar 

  34. Ladoukakis, E., Pereira, V., Magny, E.G., et al., Hundreds of putatively functional small open reading frames in Drosophila, Genome Biol., 2011, vol. 12, p. 118.

    Google Scholar 

  35. Lambowitz, A.M. and Belfort, M., Mobile bacterial group II introns at the crux of eukaryotic evolution, Microbiol. Spectr., 2015, vol. 3, MDNA3-0050-2014.

  36. Lauressergues, D., Couzigou, J.M., Clemente, H.S., et al., Primary transcripts of microRNAs encode regulatory peptides, Nature, 2015, vol. 520, no. 7545, pp. 90–93.

    CAS  PubMed  Google Scholar 

  37. Lee, H.E., Huh, J.W., and Kim, H.S., Bioinformatics analysis of evolution and human disease related transposable element-derived microRNAs, Life (Basel), 2020, vol. 10, p. 95.

    CAS  PubMed Central  Google Scholar 

  38. Li, L.J., Leng, R.X., and Fan, Y.G., Translation of noncoding RNAs: focus on lncRNAs, pri-miRNAs, and circRNAs, Exp. Cell Res., 2017, vol. 361, pp. 1–8.

    CAS  PubMed  Google Scholar 

  39. Li, X., Zhang, J., Yang, Y., et al., MicroRNA-340-5p increases telomere length by targeting telomere protein POT1 to improve Alzheimer’s disease in mice, Cell Biol. Int., 2021, vol. 45, no. 6, pp. 1306–1315. https://doi.org/10.1002/cbin.11576

    Article  CAS  PubMed  Google Scholar 

  40. Lou, Z., Zhu, J., Li, X., et al., LncRNA Sirt1-AS upregulates Sirt1 to attenuate aging related deep venous thrombosis, Aging (Albany, NY), 2021, vol. 13, pp. 6918–6935.

    CAS  Google Scholar 

  41. Lu, X., Sachs, F., Ramsay, L., et al., The retrovirus HERVH is a long noncoding RNA required for human embryonic stem cell identity, Nat. Struct. Mol. Biol., 2014, vol. 21, pp. 423–425.

    CAS  PubMed  Google Scholar 

  42. Lu, S., Zhang, J., Lian, X., et al., A hidden human proteome encoded by ‘non-coding’ genes, Nucleic Acids Res., 2019, vol. 47, no. 15, pp. 8111–8125. https://doi.org/10.1093/nar/gkz646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ma, J.J., Ju, X., Xu, R.J., et al., Telomerase reverse transcriptase and p53 regulate mammalian peripheral nervous system and CNS axon regeneration downstream of c-Myc, J. Neurosci., 2019, vol. 39, pp. 9107–9118.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Magny, E.G., Pueyo, J.I., Pearl, F.M., et al., Conserved regulation of cardiac calcium uptake by peptides encoded in small open reading frames, Science, 2013, vol. 341, pp. 1116–1120.

    CAS  PubMed  Google Scholar 

  45. Matsumoto, A., Pasut, A., Matsumoto, M., et al., mTORC1 and muscle regeneration are regulated by the LINC00961-encoded SPAR polypeptide, Nature, 2017, vol. 541, pp. 228–232.

    CAS  PubMed  Google Scholar 

  46. Maxwell, P.H., What might retrotransposons teach us about aging, Curr. Genet., 2016, vol. 62, pp. 277–282.

    CAS  PubMed  Google Scholar 

  47. Mercer, T.R., Dinger, M.E., Sunkin, S.M., et al., Specific expression of long noncoding RNAs in the mouse brain, Proc. Natl. Acad. Sci. U.S.A., 2008, vol. 105, pp. 716–721.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Mercer, T.R. and Mattick, J.S., Structure and function of long noncoding RNAs in epigenetic regulation, Nat. Struct. Mol. Biol., 2013, vol. 20, pp. 300–307.

    CAS  PubMed  Google Scholar 

  49. Mueller, C., Aschacher, T., Wolf, B., and Bergmann, M., A role of LINE-1 in telomere regulation, Front. Biosci., 2018, vol. 23, pp. 1310–1319.

    CAS  Google Scholar 

  50. Mus, E., Hof, P.R., and Tiedge, H., Dendritic BC200 RNA in aging and in Alzheimer’s disease, Proc. Natl. Acad. Sci. U.S.A., 2007, vol. 104, no. 25, pp. 10679–10684.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Nelson, B.R., Makarewich, C.A., Anderson, D.M., et al., A peptide encoded by a transcript annotated as long noncoding RNA enhances SERCA activity in muscle, Science, 2016, vol. 351, pp. 271–275.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Nichuguti, N. and Fujiwara, H., Essential factors involved in the precise targeting and insertion of telomere-specific non-LTR retrotransposon, SART1Bm, Sci. Rep., 2020, vol. 10, p. 8963.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Ng, S.Y., Bogu, G.K., Soh, B.S., and Stanton, L.W., The long noncoding RNA RMST interacts with SOX2 to regulate neurogenesis, Mol. Cell, 2013, vol. 51, pp. 349–359.

    CAS  PubMed  Google Scholar 

  54. Park, J. and Belden, W.J., Long non-coding RNAs have age-dependent diurnal expression that coincides with age-related changes in genome-wide facultative heterochromatin, BMC Genomics, 2018, vol. 19, p. 777.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Pavlicev, M., Hiratsuka, K., Swaggart, K., et al., Detecting endogenous retrovirus-driven tissue-specific gene transcription, Genome Biol. Evol., 2015, vol. 7, pp. 1082–1097.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Pereira Fernandes, D.P., Bitar, M., Jacobs, F.M., and Barry, G., Long non-coding RNAs in neuronal aging, Noncoding RNA, 2018, vol. 4, p. E12.

    PubMed  Google Scholar 

  57. Popa, A., Labrigand, P., Barbry, R., and Waldmann, R., Pateamine A-sensitive ribosome profiling reveals the scope of translation in mouse embryonic stem cells, BMC Genomics, 2016, vol. 17, p. 52.

    PubMed  PubMed Central  Google Scholar 

  58. Qian, W., Cai, X., and Qian, Q., Sirt1 antisense long non-coding RNA attenuates pulmonary fibrosis through sirt1-mediated epithelial-mesenchymal transition, Aging (Albany, NY), 2020, vol. 12, pp. 4322–4336.

    CAS  Google Scholar 

  59. Rodriguez-Martin, B., Alvarez, E.G., Baez-Ortega, A., et al., Pan-cancer analysis of whole genomes identifies driver rearrangements promoted by LINE-1 retrotransposition, Nat. Genet., 2020, vol. 52, pp. 306–319.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Ruiz-Orera, J., Messeguer, X., Subirana, J.A., and Alba, M.M., Long non-coding RNAs as a source of new peptide, eLife, 2014, vol. 3, p. e03523.

    PubMed  PubMed Central  Google Scholar 

  61. Schratz, K.E., Extrahematopoietic manifestations of the short telomere syndromes, Hematol. Am. Soc. Educ. Progr., 2020, vol. 2020, pp. 115–122.

    Google Scholar 

  62. Scheidler, C.M., Kick, L.M., and Schneider, S., Ribosomal peptides and small proteins on the rise, ChemBioChem, 2019, vol. 20, pp. 1479–1486.

    CAS  PubMed  Google Scholar 

  63. Schroeder, E.A., Raimundo, N., and Shadel, G.S., Epigenetic silencing mediates mitochondria stress-induced longevity, Cell Metab., 2013, vol. 17, pp. 954–964.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Tiwari, B., Jones, A.E., Caillet, C.J., et al., P53 directly repress human LINE1 transposons, Genes. Dev., 2020, vol. 34, pp. 1439–1451.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Trapathi, V., Shen, Z., Chakraborty, A., et al., Long noncoding RNA MALAT1 controls cell cycle progression by regulating the expression of oncogenic transcription factor B-MYB, PLoS Genet., 2013, vol. 9, p. e1003368.

    Google Scholar 

  66. Trembinski, D.J., Bink, D.I., Theodorou, K., et al., Aging-regulated anti-apoptotic long non-coding RNA Sarrah augments recovery from acute myocardial infarction, Nat. Commun., 2020, vol. 11, p. 2039.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Trizzino, M., Kapusta, A., and Brown, C.D., Transposable elements generate regulatory novelty in a tissue-specific fashion, BMC Genomics, 2018, vol. 19, p. 468.

    PubMed  PubMed Central  Google Scholar 

  68. Wang, H., Iacoangeli, A., Popps, S., et al., Dendritic BC1 RNA: functional role in regulation of translation initiation, J. Neurosci., 2002, vol. 22, no. 23, pp. 10 232–10 241.

    Google Scholar 

  69. Wang, T., Zeng, J., Lowe, C.B., et al., Species-specific endogenous retroviruses shape the transcriptional network of the human tumor suppressor protein p53, Proc. Natl. Acad. Sci. U.S.A., 2007, vol. 104, pp. 18 613–18 618.

    Google Scholar 

  70. Zhang, J., Mujahid, H., Hou, Y., et al., Plant long ncRNAs: a new frontier for gene regulatory control, Am. J. Plant Sci., 2013, vol. 4, no. 5, art. ID 32 139.

    Google Scholar 

  71. Zhao, Y., Yuan, J., and Chen, R., NONCODEv4: Annotation of noncoding RNAs with emphasis on long noncoding RNAs, in Long Non-Coding RNAs: Methods and Protocols, Methods Mol. Biol. Ser., vol. 1402, New York: Springer-Verlag, 2016, pp. 243–254.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. N. Mustafin.

Ethics declarations

The author declares that he has no conflicts of interest. This article does not contain any studies involving animals or human participants performed by the author.

Additional information

Translated by A. Barkhash

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mustafin, R.N. Relationship of Peptides and Long Non-Coding RNAs with Aging. Adv Gerontol 11, 351–361 (2021). https://doi.org/10.1134/S2079057021040081

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079057021040081

Keywords:

Navigation