Skip to main content
Log in

Epigenetic Hypothesis of the Role of Peptides in Aging

  • Published:
Advances in Gerontology Aims and scope Submit manuscript

Abstract

In addition to transcription factors, epigenetic factors, which control the release of genetic information in each cell division, play an important role in the regulation of gene expression in the ontogenesis of multicellular eukaryotes. Many binding sites for transcription factors were derived from transposon sequences. Mobile elements are also important sources of noncoding RNA. Thus, transposons have an indirect effect on gene expression and genome methylation. In evolution transposons serve as important sources for the origin of new protein and proteins domains. A number of studies have determined that long noncoding RNAs and microRNAs can be translated into functional peptides. At the same time, transposons are expressed in embryogenesis and remain active in the stem cells of adult humans, which is consistent with the transcription of noncoding RNAs. The study of these processes may be the key to the determination of aging mechanisms due to the role of mobile elements as sources of noncoding RNAs translated into functional peptides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Anisimov, V.N., Khavinson, V.Kh., Morozov, V.G., and Dil’man, V.M., Lowering of the threshold of susceptibility of hypothalamo-pituitary system to estrogen feedback effect under the influence of pineal extract in old female rats, Dokl. Akad. Nauk SSSR, 1973, vol. 213, no. 2, pp. 483–485.

    PubMed  CAS  Google Scholar 

  2. Zaitseva, Yu.V., Popova, A.A., and Khmel, I.A., Quorum sensing regulation in bacteria of the family Enterobacteriaceae, Russ. J. Genet., 2014, vol. 50, no. 4, pp. 323–340.

    Article  CAS  Google Scholar 

  3. Kozak, M.V. and Teplyi, D.L., Age- and sex-related differences of hypothalamic neuroendocrine center response to α-tocopherol acetate and Thymalin preparation, Adv. Gerontol., 2011, vol. 1, no. 1, pp. 76–80.

    Article  Google Scholar 

  4. Milyutina, Yu.P., Kozina, L.S., Arutyunyan, A.V., et al., Effect of peptide preparations of the epiphysis on proliferative processes in the organotypic culture of the hypothalamus preoptic region, Usp. Gerontol., 2007, vol. 20, no. 4, pp. 61–63.

    Google Scholar 

  5. Moskalev, A.A., Starenie i geny (Aging and Genes), St. Petersburg, 2008, p. 360.

    Google Scholar 

  6. Mustafin, R.N. and Khusnutdinova, E.K., The interaction of transposons with epigenetic factors in aging, Usp. Gerontol., 2017, vol. 30, no. 4, pp. 516–529.

    CAS  Google Scholar 

  7. Mustafin, R.N. and Khusnutdinova, E.K., Noncoding parts of genomes as the basis of epigenetic heredity, Vavilovskii Zh. Genet. Sel., 2017, vol. 21, no. 6, pp. 742–749.

    Google Scholar 

  8. Khavinson, V.Kh., Peptidnaya regulyatsiya stareniya (Peptide Regulation of Aging), St. Petersburg: Nauka, 2009.

    Google Scholar 

  9. Khavinson, V.Kh., Solovyov, A.Yu., and Shataeva, L.K., Molecular mechanism of interaction between oligopeptides and double-stranded DNA, Bull. Exp. Biol. Med., 2006, vol. 141, no. 4, pp. 457–461.

    Article  PubMed  CAS  Google Scholar 

  10. Anderson, D.M., Anderson, K.M., Cang, C.L., et al., A micro peptide encoded by a putative long noncoding RNA regulates muscle performance, Cell, 2015, vol. 160, pp. 595–606.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Belancio, V.P., Roy-Engel, A.M., and Deininger, P.L., All y’all need to know ‘bout retroelements in cancer, Semin. Cancer Biol., 2010, vol. 20, pp. 200–210.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Borchert, G.M., Holton, N.W., Williams, J.D., et al., Comprehensive analysis of microRNA genomic loci identifies pervasive repetitive-element origins, Mobile Genet. Elem., 2011, vol. 1, pp. 8–17.

    Article  Google Scholar 

  13. Campillos, M., Doerks, T., Shah, P.K., and Bork, P., Computational characterization of multiple Gag-like human protein, Trends Genet., 2006, vol. 22, no. 11, pp. 585–589.

    Article  PubMed  CAS  Google Scholar 

  14. Clarke, I.J., Hypothalamus as an endocrine organ, Compr. Physiol., 2015, vol. 5, no. 1, pp. 217–253.

    PubMed  CAS  Google Scholar 

  15. Coon, S.L., Munson, P.J., Cherukuri, P.F., et al., Circadian changes in long noncoding RNAs in the pineal gland, Proc. Natl. Acad. Sci. U.S.A., 2012, vol. 109, pp. 13319–13324.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Couzigou, J.M., Lauressergues, D., Becard, G., and Comier, J.P., miRNA-encoded peptides (miPEPs): a new tool to analyze the role of miRNAs in plant biology, RNA Biol., 2015, vol. 12, pp. 1178–1180.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Couzigou, J.M., Andre, O., Cuillotin, B., et al., Use of microRNA-encoded peptide miPEP172c to stimulate nodulation in soybean, New Phytol., 2016, vol. 211, no. 2, pp. 379–381.

    Article  PubMed  CAS  Google Scholar 

  18. Deng, B., Cheng, X., Li, H., et al., Microarray expression profiling in the denervated hippocampus identified long noncoding RNAs functionally involved in neurogenesis, BMC Mol. Biol., 2017, vol. 18, no. 1, p. 15. doi 10.1186/s12867-017-0091-2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Djebali, S., Davis, C.A., Merkel, A., et al., Landscape of tran scription in human cells, Nature, 2012, vol. 489, no. 7414, pp. 101–108.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Dupressoir, A., Lavialle, C., and Heidmann, T., From ancestral infectious retroviruses to bona fide cellular genes: role of the captured syncytins in placentation, Placenta, 2012, vol. 33, no. 9, pp. 663–671.

    Article  PubMed  CAS  Google Scholar 

  21. Feschotte, C., Transposable elements and the evolution of regulatory networks, Nat. Rev. Genet., 2008, vol. 9, no. 5, pp. 397–405.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Fitzgerald, K.A. and Caffrey, D.R., Long noncoding RNAs in innate and adaptive immunity, Curr. Opin. Immunol., 2014, vol. 26, pp. 140–146.

    Article  PubMed  CAS  Google Scholar 

  23. Gim, J., Ha, H., Ahn, K., et al., Genome-wide identification and classification of microRNAs derived from repetitive elements, Genomic Inf., 2014, vol. 12, pp. 261–267.

    Article  Google Scholar 

  24. Guillemin, R., Hypothalamic hormones a.k.a. hypothalamic releasing factors, J. Endocrinol., 2005, vol. 184, no. 1, pp. 11–28.

    Article  PubMed  CAS  Google Scholar 

  25. Hu, G., Dong, B., Zhang, J., et al., The long noncoding RNA HOTAIR activates the Hippo pathway by directly binding to SAV1 in renal cell carcinoma, Oncotarget, 2017, vol. 8, no. 35, pp. 58654–58667.

    PubMed  PubMed Central  Google Scholar 

  26. Huang, C.-J., Lin, W.-Y., Chang, C.-M., and Choo, K.-B., Transcription of the rat testis-specific Rtdpoz-T1 and -T2 retrogenes during embryo development: co-transcription and frequent exonisation of transposable element sequences, BMC Mol. Biol., 2009, vol. 10, pp. 74–88.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Johnson, R. and Guigo, R., The RIDL hypothesis: transposable elements as functional domains of long noncoding RNAs, RNA, 2014, vol. 20, no. 7, pp. 959–976.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Jacques, P.E., Jeyakani, J., and Bourgue, G., The majority of primate-specific regulatory sequences are derived from transposable elements, PLoS Genet., 2013, vol. 9, no. 5, p. e1003504.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Kapusta, A. and Feschotte, C., Volatile evolution of long noncoding RNA repertoires: mechanisms and biological implications, Trends Genet., 2014, vol. 30, no. 10, pp. 439–452.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Kirkwood, T.B., DNA, mutations, and aging, Mutat. Res., 1989, vol. 219, no. 1, pp. 1–7.

    Article  PubMed  CAS  Google Scholar 

  31. Kurnosov, A.A., Ustyugova, S.V., Nazarov, V., et al., The evidence for increased L1 activity in the site of human adult brain neurogenesis, PLoS One, 2015, vol. 10, no. 2, p. e0117854.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Lauressergues, D., Couzigou, J.M., Clemente, H.S., et al., Primary transcripts of microRNAs encode regulatory peptides, Nature, 2015, vol. 520, no. 7545, pp. 90–93.

    Article  PubMed  CAS  Google Scholar 

  33. Li, Y., Li, C., Xia, J., and Jin, Y., Domestication of transposable elements into microRNA genes in plants, PLoS One, 2011, vol. 6, p. e19212.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Li, N., Xie, C., Lu, N. Crosstalk between Hippo signaling and miRNAs in tumour progression, FEBS J., 2017, vol. 284, no. 7, pp. 1045–1055.

    Article  PubMed  CAS  Google Scholar 

  35. Lin, R., Ding, L., Casola, C., et al., Transposase-derived trans cription factors regulate light signaling in Arabidopsis, Science, 2007, vol. 318, pp. 1302–1305.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Lorenzetti, A.P., de Antonio, A.P.G.Y.A., Paschoal, A.R., and Domingues, D.S., PlanTE-MIR DB: a database for transposable element-related microRNAs in plant genomes, Funct. Integr. Genomics, 2016, vol. 16, pp. 235–242.

    Article  CAS  Google Scholar 

  37. Lowe, C.B. and Haussler, D., 29 mammalian genomes reveal novel exaptations of mobile elements for likely regulatory functions in the human genome, PLoS One, 2012, vol. 7, no. 8, p. e43128.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Lu, X., Sachs, F., Ramsay, L., et al., The retrovirus HERVH is a long noncoding RNA required for human embryonic stem cell identity, Nat. Struct. Mol. Biol., 2014, vol. 21, no. 4, pp. 423–425.

    Article  PubMed  CAS  Google Scholar 

  39. Lv, S., Pan, L., and Wang, G., Commentary: primary transcripts of microRNAs encode regulatory peptides, Front. Plant Sci., 2016, vol. 7, p. 1436.

    PubMed  PubMed Central  Google Scholar 

  40. Meister, B., Herzer, S., and Silahtaroglu, A., MicroRNAs in the hypothalamus, Neuroendocrinology, 2013, vol. 98, no. 4, pp. 243–253.

    Article  PubMed  CAS  Google Scholar 

  41. Miousse, I.R., Chalbot, M.G., Lumen, A., et al., Transposable elements in response to environmental stressors, Mutat. Res., Rev. Mutat. Res., 2015, vol. 765, pp. 19–39.

    Article  CAS  Google Scholar 

  42. Nelson, B.R., Makarewich, C.A., Anderson, D.M., et al., A peptide encoded by a transcript annotated as long noncoding RNA enhances SERCA activity in muscle, Science, 2016, vol. 351, no. 6270, pp. 271–275.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Ruiz-Orera, J., Messeguer, X., Subirana, J.A., and Alba, M.M., Long non-coding RNAs as a source of new peptides, eLife, 2014, vol. 3, p. e03523. doi 10.7554/eLife.03523

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Saghatelian, A. and Couso, J.P., Discovery and characterization of smORF-encoded bioactive polypeptides, Nat. Chem. Biol., 2015, vol. 11, no. 12, pp. 909–916.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Sturm, A., Ivics, Z., and Vellai, T., The mechanism of ageing: primary role of transposable elements in genome disintegration, Cell. Mol. Life Sci., 2015, vol. 72, no. 10, pp. 1839–1847.

    Article  PubMed  CAS  Google Scholar 

  46. Tajnik, M., Vigilante, A., Braun, S., et al., Inergenic Alu exonisation facilitates the evolution of tissue-specific transcript ends, Nucleic Acids Res., 2015, vol. 43, no. 21, pp. 10492–10505.

    PubMed  PubMed Central  CAS  Google Scholar 

  47. Taouis, M., MicroRNAs in the hypothalamus, Best Pract. Res., Clin. Endocrinol. Metab., 2016, vol. 30, no. 5, pp. 641–651.

    Article  CAS  Google Scholar 

  48. Upton, K.R., Gerhardt, D.J., Jesuadian, J.S., et al., Ubiquitous L1 mosaicism in hippocampal neurons, Cell, 2015, vol. 161, no. 2, pp. 228–239.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. van Meter, M., Kashyap, M., Rezazadeh, S., et al., SIRT6 represses LINE1 retrotransposons by ribosylating KAP1 but this repression fails with stress and age, Nat. Commun., 2014, vol. 5, p. 5011.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Wang, J., Li, X., Wang, L., et al., A novel long intergenic noncoding RNA indispensable for the cleavage of mouse two-cell embryos, EMBO Rep., 2016, vol. 17, pp. 1452–1470.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Watanabe, T., Cheng, E., Zhong, M., and Lin, H., Retrotransposons and pseudogenes regulate mRNAs and lncRNAs via the piRNA pathway in the germline, Genome Res., 2015, vol. 25, no. 3, pp. 368–380.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Yang, D., Lian, T., Tu, J., et al., LncRNA mediated regulation of aging pathways in Drosophila melanogaster during dietary restriction, Aging (N.Y.), 2016, vol. 8, no. 9, pp. 2182–2203.

    Article  CAS  Google Scholar 

  53. Zdobnov, E.M., Campillos, M., Harrington, E.D., et al., Protein coding potential of retroviruses and other transposable elements in vertebrate genomes, Nucleic Acids Res., 2005, vol. 33, no. 3, pp. 946–954.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Zhang, G., Li, J., Purkayastha, S., et al., Hypothalamic programming of systemic ageing involving IKK-β, NF-κB and GnRH, Nature, 2013, vol. 497, no. 7448, pp. 211–216.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Zhang, J., Mujahid, H., Hou, Y., et al., Plant long ncRNAs: a new frontier for gene regulatory control, Am. J. Plant. Sci., 2013, vol. 4, no. 5, art. ID 32139.

    Google Scholar 

  56. Zhang, L., Cai, Z., Wei, S., et al., MicroRNA expression profiling of the porcine developing hypothalamus and pituitary tissue, Int. J. Mol. Sci., 2013, vol. 14, no. 10, pp. 20326–20339.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. N. Mustafin.

Additional information

Translated by E. Sherstyuk

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mustafin, R.N., Khusnutdinova, E.K. Epigenetic Hypothesis of the Role of Peptides in Aging. Adv Gerontol 8, 200–209 (2018). https://doi.org/10.1134/S2079057018030128

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079057018030128

Keywords:

Navigation