Skip to main content
Log in

Terahertz radiation influence on stressed drosophila life span

  • Complex Systems Biophysics
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

Virgin fruit fly females and males were stressed by placement into a confined space without food for 3 h. Part of stressed flies were subjected to terahertz irradiation (0.1–2.2 THz) during 30 min. Life span of individual flies was evaluated. Terahertz radiation had some positive influence on male survival during the stage of monotonic decrease in flies number and negative effect during the stage of relatively stable number of flies. The survival of irradiated females on the stage of sharp decline in the number of flies was higher than in stressed and control females. Authors propose that terahertz radiation has an indirect effect on gene expression and signaling pathways which control the survival and life span of Drosophila.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. J. Wilmink, B. D. Rivest, C. C. Roth, et al., Lasers in Surgery and Medicine 43(2), 152 (2011).

    Article  Google Scholar 

  2. J. Bock, Y. Fukuyo, S. Kang, et al., PLoS One 5(12), e15806 (2010).

    Article  ADS  Google Scholar 

  3. E. V. Demidova, T. N. Goryachkovskaya, T. K. Malup, et al., Bioelectromagnetics 34(1), 15 (2013).

    Article  Google Scholar 

  4. V. I. Fedorov, Biomed. Radioelektronika, No. 2, 17 (2011).

    Google Scholar 

  5. L. V. Titova, A. K. Ayesheshim, A. Golubov, et al., Proc. of SPIE 8585, 85850Q–1 (2013).

    Article  Google Scholar 

  6. B. S. Alexandrov, K. Rasmussen, and A. R. Bishop, Biomed. Optics Express 2(9), 2679 (2011).

    Article  Google Scholar 

  7. B. S. Alexandrov, M. L. Phipps, and L. B. Alexandrov, Sci. Reports 3, 1184 (2013).

    ADS  Google Scholar 

  8. V. I. Fedorov and I. E. Likhenko, Millim. Volny Biol. Med., No. 3, 62 (2011).

    Google Scholar 

  9. Mi Zhengyu, Infrared Phys. 29(2–4), 631 (1989).

    Google Scholar 

  10. H. Zhuopei, X. Shupping, X. Jun, et al., Chinese J. Infrared and Millimeter Waves 12(6), 531 (1994).

    Google Scholar 

  11. A. A. Moskalev, Aging and Genes (Nauka, St. Petersburg, 2008) [in Russian].

    Google Scholar 

  12. S. Davinelli, D. C. Willcox, and G. Scapagnini, Immun. Aging 9(1), 9 (2012).

    Article  Google Scholar 

  13. K. G. Iliadi, D. Knight, and G. L. Boulianne, Front. Physiol. 3, 106 (2012).

    Article  Google Scholar 

  14. N. P. Zalyubovskaya, L. M. Chepel’, and V. G. Shakhbazov, Vestn. Khar’kov. Gosuniver, (39), Ser. Biol., No. 2, 42 (1970).

    Google Scholar 

  15. V. I. Fedorov, N. Ya. Weisman, E. F. Nemova, et al., Biophysics 58, 820 (2013).

    Article  Google Scholar 

  16. V. I. Fedorov, A. S. Pogodin, T. D. Dubatolova, et al., Biophysics 46, 293 (2001).

    Google Scholar 

  17. G. J. Wilmink, J. E. Grundt, J. Infrared, Millimeter and Terahertz Waves 32(10), 1074 (2011).

    Article  Google Scholar 

  18. I. Yu. Raushenbakh, N. V. Adon’eva, N. E. Gruntenko, et al., Ontogenez 35(5), 366 (2004).

    Google Scholar 

  19. I. B. Mosse, I. P. Anoshenko, I. V. Glushkova, et al., Radiats. Biol. Radioekol. 46(3), 287 (2006).

    Google Scholar 

  20. V. D. Antsygin, A. A. Mamrashev, N. A. Nikolaev, et al., Avtometriya 46(3), 110 (2010).

    Google Scholar 

  21. J. M. Bland and D. G. Altman, Br. Med. J. 328(7447), 1073 (2004).

    Article  Google Scholar 

  22. V. I. Fedorov, S. S. Popova, A. N. Pisarchik, Internat. J. Infrared and Millimeter Waves 24(8), 1235 (2003).

    Article  Google Scholar 

  23. V. I. Fedorov, Millim. Volny Biol. Med., No. 3, 5 (2011).

    Google Scholar 

  24. P. Weightman, Phys. Biol. 9 053001 (2012).

    Article  ADS  Google Scholar 

  25. H. Hintzschea and H. Stoppera, Critical Rev. in Environ. Sci. and Technol., http://www.tandfonline.com/doi/abs/10.1080/10643389.2011.574206#tabModule

  26. S. S. Popova, Millim. Volny Biol. Med., No. 3, 53 (2011).

    Google Scholar 

  27. S. W. Smye, J. M. Chamberlain, A. J. Fitzgerald, et al., Phys. Med. Biol. 46(9), R101 (2001).

    Article  ADS  Google Scholar 

  28. V. M. Orlov, Insects in Electric Fields (Biological Phenomena and Mechanisms of Perception) (Izd. TGU, Tomsk, 1990) [in Russian].

    Google Scholar 

  29. I. Yu. Raushenbakh, Genetika 33(8), 1110 (1997).

    Google Scholar 

  30. N. E. Gruntenko, E. K. Karpova, N. V. Adonyeva, et al., J. Insect Physiol. 51(4), 417 (2005).

    Article  Google Scholar 

  31. C. G. Zou, Q. Tu, J. Niu, et al., PLoS Pathog. 9(10), 1003660 (2013).

    Article  Google Scholar 

  32. M. Petrascheck, X. Ye, and L. B. Buck, Nature 450(7169), 553 (2007).

    Article  ADS  Google Scholar 

  33. K. W. Chung, D. H. Kim, and M. H. Park, Exp Gerontol. 48(10), 1049 (2013).

    Article  Google Scholar 

  34. N. G. Kolosova, A. O. Vitovtov, N. A. Muraleva, et al., Aging (Albany NY) 5(6), 474 (2013).

    Google Scholar 

  35. S. V. Nuzhdin, E. G. Pasyukova, Ch. L. Dilda, et al., Proc. Natl. Acad. Sci. USA 94(18), 9734 (1997).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Fedorov.

Additional information

Original Russian Text © V.I. Fedorov, N.Ya. Weisman, E.F. Nemova, N.A. Nikolaev, 2014, published in Biofizika, 2014, Vol. 59, No. 3, pp. 558–564.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fedorov, V.I., Weisman, N.Y., Nemova, E.F. et al. Terahertz radiation influence on stressed drosophila life span. BIOPHYSICS 59, 458–463 (2014). https://doi.org/10.1134/S0006350914030063

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350914030063

Keywords

Navigation