Skip to main content
Log in

Kinetic Study of Lithium–Zinc Ferrite Synthesis under Electron Beam Heating Conditions

  • NEW TECHNOLOGIES FOR OBTAINING AND PROCESSING MATERIALS
  • Published:
Inorganic Materials: Applied Research Aims and scope

Abstract

In this paper, we consider the kinetic regularities of lithium–zinc ferrite synthesis under conditions of heating by a high-energy electron beam of mixtures of initial reagents Fe2O3–Li2CO3–ZnO of bulk density and pressed in a hydraulic press. Radiation-thermal synthesis of the samples was performed using an ILU-6 pulsed electron accelerator by heating them with a 2.4-MeV high-energy electron beam. The samples were heated to 600, 700, and 750°C and held at these temperatures for up to 120 min. For comparison with radiation-thermal synthesis, similar studies were carried out with traditional thermal annealing under the same conditions. An X-ray diffraction analysis of the synthesized samples was performed. The rate of ferrite formation was found to depend on both the heating method and the density of the mixture. Heating the mixture with an electron beam is shown to significantly accelerate the process of obtaining ferrite, which manifests itself in a decrease in the values of the kinetic parameters of the ferrite synthesis. An increase in the rate of ferrite formation under the effect of electrons is due to a significant decrease in the activation energy of the synthesis and a decrease in the pre-exponential factor in the temperature dependence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Verma, V., Gairola, S.P., Pandey, V., Tawale, J.S., Su, H., and Kotanala, R.K., High permeability and low power loss of Ti and Zn substitution lithium ferrite in high frequency range, J. Magn. Magn. Mater., 2009, vol. 321, pp. 3808–3812.

    Article  CAS  Google Scholar 

  2. Sláma, J., Šoka, M., Grusková, A., Dosoudil, R., Jančárik, V., and Degmová, J., Magnetic properties of selected substituted spinel ferrites, J. Magn. Magn. Mater., 2013, vol. 326, pp. 251–256.

    Article  Google Scholar 

  3. Baba, P.D., Argentina, G.M., Courtney, W.E., Dionne, G.F., and Temme, D.H., Fabrication and properties of microwave lithium ferrites, IEEE Trans. Magn., 1972, vol. 8, pp. 83–94.

    Article  CAS  Google Scholar 

  4. Gee, S.H., Hong, Y.K., Park, M.H., Erickson, D.W., and Lamb, P.J., Synthesis of nanosized (Li0.5xFe0.5xZn1 – x)Fe2O4 particles and magnetic properties, J. Appl. Phys., 2002, vol. 91, no. 10, pp. 7586–7588.

    Article  CAS  Google Scholar 

  5. Kavanlooee, M., Hashemi, B., Maleki-Ghaleh, H., and Kavanlooee, J., Effects of annealing on phase evolution, microstructure and magnetic properties of nanocrystalline ball-milled LiZnTi ferrite, J. Electron. Mater., 2012, vol. 41, no. 11, pp. 3082–3086.

    Article  Google Scholar 

  6. Jiang, X.N., Lan, Z.W., Yu, Z., Liu, P.Y., Chen, D.Z., and Liu, C.Y., Sintering characteristics of LiZn ferrites fabricated by a sol–gel process, J. Magn. Magn. Mater., 2009, vol. 321, pp. 52–55.

    Article  CAS  Google Scholar 

  7. Teixeira, S.S., Graça, M.F., and Costa, L.C., Dielectric, morphological and structural properties of lithium ferrite powders prepared by solid state method, J. Non-Cryst. Solids, 2012, vol. 358, pp. 1924–1929.

    Article  CAS  Google Scholar 

  8. Hrešĉak, J., Maliĉ, B., Cilenšek, J., and Benĉan, A., Solid-state synthesis of undoped and Sr-doped K0.5Na0.5NbO3, J. Therm. Anal. Calorim., 2017, vol. 127, pp. 129–136.

    Article  Google Scholar 

  9. Sharma, P., Diwan, P.K., and Pandey, O.P., Impact of environment on the kinetics involved in the solid-state synthesis of bismuth ferrite, Mater. Chem. Phys., 2019, vol. 233, pp. 171–179.

    Article  CAS  Google Scholar 

  10. Teo, M.L.S., Kong, L.B., Li, Z.W., Lin, G.Q., and Gan, Y.B., Development of magneto-dielectric materials based on Li-ferrite ceramics: I. Densification behavior and microstructure development, J. Alloys Compd., 2008, vol. 459, pp. 557–566.

    Article  CAS  Google Scholar 

  11. Surzhikov, A.P., Frangulyan, T.S., Ghyngazov, S.A., and Lysenko, E.N., Investigation of structural states and oxidation processes in Li0.5Fe2.5O4 – δ using TG analysis, J. Therm. Anal. Calorim., 2012, vol. 3, pp. 1207–1212.

    Article  Google Scholar 

  12. Auslender, V.L., Bochkarev, I.G., Boldyrev, V.V., Lyakhov, N.Z., and Voronin, A.P., Electron beam induced diffusion controlled reaction in solids, Solid State Ionics, 1997, vols. 101–103, pp. 489–493.

  13. Neronov, V.A., Voronin, A.P., Tatarintseva, M.I., Melekhova, T.E., and Auslender, V.L., Sintering under a high-power electron beam, J. Less Common Met., 1986, vol. 117, pp. 391–394.

    Article  CAS  Google Scholar 

  14. Ancharova, U.V., Mikhailenko, M.A., Tolochko, B.P., Lyakhov, N.Z., Korobeinikov, M.V., Bryazgin, A.A., Bezuglov, V.V., and Shtarklev, E.A., Synthesis and staging of the phase formation for strontium ferrites in thermal and radiation thermal reactions, IOP Conf. Ser.: Mater. Sci. Eng., 2015, vol. 81, art. ID 012122.

  15. Boldyrev, V.V., Voronin, A.P., Gribkov, O.S., Tkachenko, E.V., Karagedov, G.R., Yakobson, B.I., and Auslender, V.L., Radiation-thermal synthesis. Current achievement and outlook, Solid State Ionics, 1989, vol. 36, nos. 1–2, pp. 1–6.

  16. Lyakhov, N.Z., Boldyrev, V.V., Voronin, A.P., Gribkov, O.S., Bochkarev, I.G., Rusakov, S.V., and Auslender, V.L., Electron beam stimulated chemical reaction in solids, J. Therm. Anal. Calorim., 1995, vol. 43, no. 1, pp. 21–31.

    Article  CAS  Google Scholar 

  17. Surzhikov, A.P., Lysenko, E.N., Sheveleva, E.A., Malyshev, A.V., Astafyev, A.L., and Vlasov, V.A., X-ray diffraction and magnetic investigations of lithium–zinc ferrites synthesized by electron beam heating, J. Electron. Mater., 2018, vol. 47, no. 2, pp. 1192–1200.

    Article  CAS  Google Scholar 

  18. Surzhikov, A.P., Vasendina, E.A., Lysenko, E.N., and Nikolaev, E.V., Kinetics of phase formation in a L-i2CO3–TiO2–Fe2O3 system during radiation-thermal synthesis, Inorg. Mater.: Appl. Res., 2014, vol. 5, pp. 102–106.

    Article  Google Scholar 

  19. Lysenko, E.N., Vlasov, V.A., and Surzhikov, A.P., Investigation of kinetics of lithium ferrite formation under electron beam treatment, Nucl. Instrum. Methods Phys. Res., Sect. B, 2020, vol. 466, pp. 31–36.

    CAS  Google Scholar 

  20. Mehnert, R., Review of industrial applications of electron accelerators, Nucl. Instrum. Methods Phys. Res., Sect. B, 1996, vol. 113, pp. 81–87.

    CAS  Google Scholar 

  21. Zhuravlev, V.A., Naiden, E.P., Minin, R.V., Itin, V.I., Suslyaev, V.I., and Korovin, E.Yu., Radiation-thermal synthesis of W-type hexaferrites, IOP Conf. Ser.: Mater. Sci. Eng., 2015, vol. 81, art. ID 012003.

  22. Kostishin, V.G., Andreev, V.G., Korovushkin, V.V., Chitanov, D.N., Yudanov, N.A., Morchenko, A.T., Komlev, A.S., Adamtsov, A.Yu., and Nikolaev, A.N., Preparation of 2000NN ferrite ceramics by a complete and a short radiation-enhanced thermal sintering process, Inorg. Mater., 2014, vol. 50, pp. 1317–1323.

    Article  CAS  Google Scholar 

  23. Naiden, E.P., Zhuravlev, V.A., Minin, R.V., Suslya-ev, V.I., Itin, V.I., and Korovin, E.Yu., Structural and magnetic properties of SHS-produced multiphase W‑type hexaferrites: Influence of radiation-thermal treatment, Int. J. Self-Propag. High-Temp. Synth., 2015, vol. 24, pp. 148–151.

    Article  CAS  Google Scholar 

  24. Kostishyn, V., Isaev, I., Scherbakov, S., Nalogin, A., Belokon, E., and Bryazgin, A., Obtaining anisotropic hexaferrites for the base layers of microstrip SHF devices by the radiation-thermal sintering, East.-Eur. J. Enterp. Technol., 2016, vol. 5, pp. 32–39.

    Google Scholar 

  25. Naiden, E.P., Minin, R.V., Itin, V.I., and Zhuravlev, V.A., Influence of radiation-thermal treatment on the phase composition and structural parameters of the SHS product based on W-type hexaferrite, Russ. Phys. J., 2013, vol. 56, pp. 674–680.

    Article  CAS  Google Scholar 

  26. Oleinikov, P.N., Murav’eva, G.P., and Oleinikov, N.N., Effect of the real structure of hematite on the kinetics of ferrite formation in the Li2O–Fe2O3 system, Neorg. Mater., 1995, vol. 31, pp. 1571–1576.

    Google Scholar 

Download references

Funding

The work was supported by the Russian Science Foundation, project no. 19-72-10078.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. N. Lysenko, V. A. Vlasov, A. P. Surzhikov or A. I. Kupchishin.

Additional information

Translated by A. Ivanov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lysenko, E.N., Vlasov, V.A., Surzhikov, A.P. et al. Kinetic Study of Lithium–Zinc Ferrite Synthesis under Electron Beam Heating Conditions. Inorg. Mater. Appl. Res. 13, 494–500 (2022). https://doi.org/10.1134/S2075113322020265

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075113322020265

Keywords:

Navigation