Skip to main content
Log in

Effect of Carbon on the Electrical Resistivity of Ni–Al Intermetallic Alloy Synthesized by an Electrothermal Explosion under Pressure

  • GENERAL-PURPOSE MATERIALS
  • Published:
Inorganic Materials: Applied Research Aims and scope

Abstract

The effect of carbon (3 wt %) on the electrical resistivity of alloys based on aluminum nickelides Ni–Al and Ni–Al–C synthesized by electrothermal explosion in the temperature range of 300–1300 K in a vacuum of 2 × 10–3 Pa has been studied. At an electrothermal explosion in a powder reaction medium, a Ni–Al-based melt is formed in which carbon dissolves. It is shown that, during the crystallization of the final product, due to its low solubility in Ni–Al, carbon is located at the boundaries of intermetallic grains of Ni–Al in the form of multilayer graphite nanofilms 50–80 nm thick, filling the intergranular space. It is shown that the synthesized alloys have a metallic character of conductivity, and the electrical resistivity in the measured temperature range of 300–1300 K increases monotonically for Ni–Al from 16 to 40 μΩ cm and for the carbon-bearing alloy Ni–Al–C from 22 to 60 μΩ cm. In this case, an increase in the temperature coefficient of resistance (TCR) is also observed from 1.45 × 10–3 K–1 for Ni–Al to 1.77 × 10–3 K–1 for Ni–Al–C. The slope of the curves of the dependence of electrical resistance on temperature in the studied temperature range of 300–1300 K remains constant and is well described by a linear function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Miracle, D.B. and Darolia, R., NiAl and its alloys, in Intermetallic Compounds: Principles and Practice, vol. 1: Principles, Westbrook, J.H. and Fleischer, R.L., Eds., London: Wiley, 1995, pp. 55–74.

  2. Noebe, R.D., Bowman, R.R., and Nathal, M.V., The physical and mechanical metallurgy of NiAl, in Physical Metallurgy and Processing of Intermetallic Compounds, Stoloff, N.S. and Sikka, V.K., Eds., Boston, MA: Springer, 1996, pp. 212–296. https://doi.org/10.1007/978-1-4613-1215-4

  3. Darolia, R., Lahrman, D.F., Field, R.D., Dobbs, J.R., Chang, K.M., Goldman, E.H., and Konitzer, D.G., Overview of NiAl alloys for high temperature structural applications, in Ordered Intermetallics – Physical Metallurgy and Mechanical Behaviour, Liu, C.T., Cahn, R.W., and Sauthoff, G., Eds., Dordrecht: Springer, 1992, vol. 213, pp. 679–698. https://doi.org/10.1007/978-94-011-2534-5_43

  4. Lyakishev, N.P., Fazovye diagrammy binarnykh system, 3 vols. (Phase Diagrams of Binary Metallic Systems), Moscow, Mashinostroenie, 1996–2000.

  5. Corey, C.L. and Lisowsky, E., Electrical resistivity of Ni3Al alloys, Trans. Metall. Soc. AIME, 1967, vol. 239A, pp. 239–245.

    Google Scholar 

  6. Nikolaev, B. and Tjagunov, G., Investigation into the electrical resistivity of Ni–Al alloys, J. Phys.: Condens. Matter, 1994, vol. 6, pp. 9301–9309.

    CAS  Google Scholar 

  7. Sun, Y.Q., Hazzledine, P.M., and Dimiduk, D.M., Formation of dislocations in NiAl single crystals studied by in situ electrical resistivity measurement, MRS Online Proc. Libr., 1997, vol. 500, pp. 49–56. https://doi.org/10.1557/PROC-500-49

    Article  Google Scholar 

  8. Qin, X.Y., Zhang, L.D., Wu, B.M., and Tian, M.L., Resistivity and its temperature dependence of nanostructured NiAl at temperatures from 77 to 300 K, J. Appl. Phys., 1996, vol. 80, art. ID 4776. https://doi.org/10.1063/1.363417

    Article  CAS  Google Scholar 

  9. Karaköse, E. and Keskin, M., Influences of high temperature on the microstructural, electrical and mechanical properties of Ni-23 wt.% Al alloy, Int. J. Mater. Res., 2015, vol. 106, no. 1, pp. 29–42. https://doi.org/10.3139/146.111145

    Article  Google Scholar 

  10. Kositsyn, S.V., Splavy i pokrytiya na osnove monoaluminida nikelya (Alloys and Coatings Based on Nickel Monoaluminide), Ekaterinburg: Ural Branch Russ. Acad. Sci., 2008.

  11. Mitrokhin, Yu.S., Belash, V.P., Stepanova, N.N., Rinkevich, A.B., Klimova, I.N., and Akshentsev, Yu.N., Effect of alloying on interatomic interaction in the intermetallic compound Ni3Al, Phys. Met. Metallogr., 2005, vol. 99, pp. 265–271.

    Google Scholar 

  12. Tyagunov, A.G., V’yukhin, V.V., Baryshev, E.E., Tyagunov, G.V., and Savin, O.V., Influence of aluminium on electric resistivity of nickel-aluminium alloys, Vestn. Yuzhno-Ural. Gos. Univ., Metall., 2015, vol. 15, no. 4, pp. 51–56.

    Google Scholar 

  13. Lepikhin, S.V. and Stepanova, N.N., Investigation of the Ni3Al–Fe alloys by resistivity measurements and differential thermal analysis, Russ. J. Non-Ferrous Met., 2013, vol. 54, no. 6, pp. 475–479. https://doi.org/10.3103/S1067821213060151

    Article  Google Scholar 

  14. Stepanova, N.N., Rinkevich, A.B., and Mitrokhin, Yu.S., Fizicheskie svoistva Ni 3 Al legirovannogo tret’im elementom: Eksperiment i modelirovanie (Physical Properties of Ni3Al Doped with the Third Element: Experiment and Modeling), Romanova, E.P., Ed., Ekaterinburg: Ural Branch Russ. Acad. Sci., 2010.

    Google Scholar 

  15. Honjo, K. and Shindo, A., Influence of carbide formation on the strength of carbon fibers on which silicon and titanium have been deposited, J Mater Sci., 1986, vol. 21, pp. 2043–2048. https://doi.org/10.1007/BF00547945

    Article  CAS  Google Scholar 

  16. Chou, T.W., Kelly, A., and Okura, A., Fibre-reinforced metal-matrix composites, Composites, 1985, vol. 16, pp. 187–206. https://doi.org/10.1016/0010-4361(85)90603-2

    Article  CAS  Google Scholar 

  17. Sytschev, A.E., Vadchenko, S.G., Boyarchenko, O.D., and Shchukin, A.S., Ni3Al/C composites by thermal explosion, Int. J. Self-Propag. High-Temp. Synth., 2018, vol. 27, no. 1, pp. 64–65. https://doi.org/3103/S1061386218010090

    Article  Google Scholar 

  18. Sytschev, A.E., Kochetov, N.A., Vadchenko, S.G., Kovalev, D.Yu, and Shchukin, A.S., Processing of Ni–Al intermetallic with 2D carbon components, Mater. Chem. Phys., 2019, vol. 238, art. ID 121898. https://doi.org/10.1016/j.matchemphys.2019.121898

    Article  CAS  Google Scholar 

  19. Saikov, I.V., Alymov, M.I., Vadchenko, S.G., and Kovalev, I.D., Investigation of shock-wave initiation in metal-teflon powder mixtures, Lett. Mater., 2017, vol. 7, no. 4, pp. 465–468. https://doi.org/10.22226/2410-3535-2017-4-465-468

    Article  Google Scholar 

  20. Galiev, F.F., Saikov, I.V., Berbentsev, V.D., Guluytin, A.V., Bugakov, V.I., Sachkova, N.V., Konovalikhin, S.V., and Alymov, M.I., High-temperature gas extrusion of a reactive Ni + Al powder mixture, Dokl. Phys., 2019, vol. 64, no. 12, pp. 446–448. https://doi.org/10.1134/S1028335819120024

    Article  CAS  Google Scholar 

  21. Shcherbakov, A.V., Shcherbakov, V.A., Barinov, V.Yu., Vadchenko, S.G., and Linde, A.V., Influence of the mechanical activation of reaction mixture on the formation of microstructure of ZrB2–CrB composites obtained by electrothermal explosions under pressure, Refract. Ind. Ceram., 2019, vol. 60, no. 2, pp. 223–226. https://doi.org/10.1007/s11148-019-00340-y

    Article  CAS  Google Scholar 

  22. Karpov, A.V., Konovalikhin, S.V., Borovinskaya, I.P., Sachkova, N.V., Kovalev, D.Yu., and Sytschev, A.E., Conductive TiB2–AlN–BN-based composite SHS ceramics, Russ. J. Non-Ferrous Met., 2018, vol. 59, pp. 658–663. https://doi.org/10.3103/S1067821218060081

    Article  Google Scholar 

  23. Talaş, Ş., Nickel aluminides, in Intermetallic Matrix Composites, Elsevier, 2018, pp. 37–69. https://doi.org/10.1016/b978-0-85709-346-2.00003-0

  24. Terada, Y., Ohkubo, K., Mohri, T., and Suzuki, T., Thermal conductivity of intermetallic compounds with metallic bonding, Mater. Trans., 2002, vol. 43, no. 12, pp. 3167–3176.

    Article  CAS  Google Scholar 

  25. Mints, R.S., Belyaeva, G.F., and Malkov, Yu.S., Interaction between Ni3Al and Ni3Nb, Dokl. Akad. Nauk SSSR, 1962, vol. 143, no. 4, pp. 871–874.

    CAS  Google Scholar 

  26. Vanyukhin, K.D., Kobeleva, S.P., Kontsevoi, Y.A., Kurmachev, V.A., and Seidman, L.A., Studying the uniformity of the surface resistance of Ti, Al, Ni, Cr, and Au metal films on silicon, Russ. Microelectron., 2013, vol. 42, pp. 483–487. https://doi.org/10.1134/S1063739713080143

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. E. Sytschev, A. V. Karpov or A. V. Shcherbakov.

Additional information

Translated by V. Selikhanovich

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sytschev, A.E., Karpov, A.V. & Shcherbakov, A.V. Effect of Carbon on the Electrical Resistivity of Ni–Al Intermetallic Alloy Synthesized by an Electrothermal Explosion under Pressure. Inorg. Mater. Appl. Res. 12, 1310–1313 (2021). https://doi.org/10.1134/S2075113321050403

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075113321050403

Keywords:

Navigation