Skip to main content
Log in

Synthesis of an Intermetallic Alloy Based on 2Cu–Ti–Al: Structure Analysis and Electrophysical Properties

  • PHYSICAL METALLURGY AND HEAT TREATMENT
  • Published:
Russian Journal of Non-Ferrous Metals Aims and scope Submit manuscript

Abstract

An intermetallic alloy based on the Heusler phase—Cu2TiAl—has been obtained by self-propagating high-temperature synthesis (SHS) in the Cu–Ti–Al system for the first time. The modes of frontal combustion of the green mixtures and the processes of phase formation during synthesis have been studied. The resulting products have been studied by X-ray analysis (including high-temperature diffractometry with step heating up to 900 K), scanning electron microscopy, and differential thermal analysis (DTA), and some physical properties have been studied. Electrophysical and magnetic measurements are also carried out for the alloy. The results of X-ray analysis and scanning electron microscopy using energy-dispersive analysis (EDA) have shown that the content of the Heusler phase in the synthesized product is at least 82%. The product also contains copper (CunineAl4) and titanium (Ti3Al2) aluminides. The temperature dependence of the electrical resistivity of the synthesized product is measured for a wide temperature range of 90–1000 K. The resistivity at T = 300 K is 0.3 μm Ωm. The metallic type of conductivity for obtained samples and the anomalous behavior of the temperature curve of electrical resistance in the region of 770–790 K are revealed. Thermal analysis is used to measure the melting point of the synthesized product and reveal additional heat effects at 788, 848, and 1248 K associated with possible phase transitions in the Cu2TiAl intermetallic compound. One possible mechanism of these phase transitions is considered in accordance with the phase diagram of the Cu–Ti–Al system. Magnetic measurement results show that intermetallic samples of the compound obtained by the SHS method exhibit weak ferromagnetic properties with residual magnetization of 0.069 A m2/kg.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Zhu, K., Zhao, Y., Qu, H., Wu, Zh., and Zhao, X., Microstructure and properties of burn-resistant Ti–Al–Cu alloys, J. Mater. Sci., 2000, vol. 35, pp. 5609–5612.

    Article  CAS  Google Scholar 

  2. Salehi, M. and Hosseini, R., Structural characterization of novel Ti–Cu intermetallic coatings, Surf. Eng., 1996, vol. 12, no. 3, pp. 221–224.

    Article  CAS  Google Scholar 

  3. Sereda, B.P., Diffusion titanation as a method for improving wear resistance of brass and bronze in aggressive environment. http://www.zgia.zp.ua/gazeta/METALLURG_26_14.pdf.

  4. Evstropov, D.A., Structure and properties formation of composite coatings of the Cu–Ti system on the surface of copper units, Extended Abstract of Cand. Sci. (Eng.) Dissertation, Volgograd: Volgograd State Technical Univ., 2016.

  5. Chen, X., Zhang, F., Chi, M., Yang, S., Wang, S., Li, X., and Zheng, S., Microstructure, superelasticity and shape memory effect by stress-induced martensite stabilization in Cu–Al–Mn–Ti shape memory alloys, J. Mater. Sci. Eng., 2018, vol. 236, pp. 1–10.

    Google Scholar 

  6. Tian, J., Zhu, W., Wei, Q., Wen, S., Li, S., Song, B., and Shi, Yu., Process optimization, microstructures and mechanical properties of a Cu-based shape memory alloy fabricated by selective laser melting, J. Alloys Compd., 2019, vol. 785, pp. 754–764.

    Article  CAS  Google Scholar 

  7. Li, S., Takahashi, Y.K., Sakuraba, Y., and Chen, J., Current-perpendicular-to-plane giant magnetoresistive properties in Co2Mn(Ge0.75Ga0.25)/Cu2TiAl/Co2Mn(Ge0.75Ga0.25) all-Heusler alloy pseudo spin valve, J. Appl. Phys., 2016, vol. 119, p. 093  911. https://doi.org/10.1063/1.4942853

    Article  CAS  Google Scholar 

  8. Leyens, C. and Peters, M., Titanium and Titanium Alloys: Fundamentals and Applications, Wiley-VCH, 2003, pp. 1–532. https://doi.org/10.1002/3527602119

    Book  Google Scholar 

  9. El-Sayed M. Sherif, Hany S. Abdo, Fahamsyah H. Latief, Nabeel H. Alharthi, and Sherif Zein El Abedin, Fabrication of Ti–Al–Cu new alloys by inductive sintering, characterization, and corrosion evaluation, J. Mater. Res. Technol., 2019, vol. 8, no. 5, pp. 4302–4311. https://doi.org/10.1016/j.jmrt.2019.07.040

    Article  CAS  Google Scholar 

  10. Espinoza, R., Palma, R., Sepulveda, A., and Fuenzalida, V., Microstructural characterization of dispersion-strengthened Cu–Ti–Al alloys obtained by reaction milling, Mater. Sci. Eng., A, 2007, vols. 454–455, pp. 183–193. https://doi.org/10.1016/j.msea.2006.11.042

    Article  CAS  Google Scholar 

  11. Itin, V.I. and Naiborodenko, Yu.S., Vysokotemperaturnyi sintez intermetallicheskikh soedinenii (High-Temperature Synthesis of Intermetallic Compounds), Tomsk: Tomsk State Univ., 1989.

  12. Rogachev, A.S. and Mukas’yan, A.S., Gorenie dlya sinteza materialov: vvedenie v strukturnuyu makrokinetiku (Combustion for Materials Synthesis: Introduction into Structural Macro-Kinetics), Moscow: Fizmatlit, 2012.

  13. Levashov, E.A., Mukasyan, A.S., Rogachev, A.S., and Shtansky, D.V., Self-propagating high-temperature synthesis of advanced materials and coatings, Int. Mater. Rev., 2017, vol. 62, no. 4, pp. 203–239. https://doi.org/10.1080/09506608.2016.1243291

    Article  CAS  Google Scholar 

  14. Karpov, A.V., Morozov, Yu.G., Bunin, V.A., and Borovinskaya, I.P., Effect of yttria additions on the electrical conductivity of SHS nitride ceramics, Inorg. Mater., 2002, vol. 38, no. 6, pp. 631–634. https://doi.org/10.1023/A:1015881922939

    Article  CAS  Google Scholar 

  15. Ugur, G. and Bozan, I., Electronic, elastic and vibrational properties of Cu2TMAl (TM = Sc, Ti, Cr) from first-principles calculations, Proc. 12th Int. Congress “Machines, Technologies, Materials”, Borovets, 2015, pp. 112–113.

  16. Pang, M., Zhan, Y., Wang, H., Jiang, W., and Du, Y., Ab initio study of AlCu2M (M = Sc, Ti and Cr) ternary compounds under pressures, Comput. Mater. Sci., 2011, vol. 50, p. 2930.

    Article  CAS  Google Scholar 

  17. Dwight, A. and Kimball, C., ScT2X and LnT2X compounds with the MnCu2Al-type structure, J. Less-Common Met., 1987, vol. 127, pp. 179–182.

    Article  CAS  Google Scholar 

  18. Liu, X. and Wang, C., Phase equilibria and phase transformation of the body-centered cubic phase in the Cu-rich portion of the Cu–Ti–Al system, J. Mater. Res., 2008, vol. 23, no. 10, pp. 2674–2684.

    Article  CAS  Google Scholar 

  19. Lipatnikov, V.N., Kottar, A., Zueva, L.V., and Gusev, A.I., Disorder-order phase transformations and electrical resistivity of nonstoichiometric titanium carbide, Fiz. Tverd. Tela, 1998, vol. 40, no. 7, pp. 1332–1340.

    CAS  Google Scholar 

  20. Mizutani, U., Yamada, Y., and Ito, Y., Proc. Spring Meeting of Japan Institute of Metals, Tokyo, 1986, p. 63.

  21. Lazurenko, D., Bataev, I., Ogneva, T., Maliutina, I., Mali, V., Jorge, A., Stark, A., and Pyczak, F., Synthesis of metal-intermetallic laminate (MIL) composites with modified Al3Ti structure and in situ synchrotron X-ray diffraction analysis of sintering process, Mater. Des., 2015, vol. 151, pp. 8–16. https://doi.org/10.1016/j.matdes.2018.04.038

    Article  CAS  Google Scholar 

  22. Landolt-Bornstein, Materials Science International Team, MSIT, Ternary Alloy Systems: Phase Diagrams, Crystallographic and Thermodynamic Data, Effenberg, G. and Ilyenko, S., Eds., Berlin: Springer, 2008, pp. 156–173.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. L. Busurina, A. E. Sytschev, A. V. Karpov, N. V. Sachkova or I. D. Kovalev.

Ethics declarations

The authors declare that they have no conflicts of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Busurina, M.L., Sytschev, A.E., Karpov, A.V. et al. Synthesis of an Intermetallic Alloy Based on 2Cu–Ti–Al: Structure Analysis and Electrophysical Properties. Russ. J. Non-ferrous Metals 62, 82–88 (2021). https://doi.org/10.3103/S1067821221010053

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1067821221010053

Keywords:

Navigation