Skip to main content
Log in

Potential and Capabilities of Porous Silicon as a Material for Intravascular Drug-Eluting Stents: Brief Summary

  • PHYSICOCHEMICAL PRINCIPLES OF CREATING MATERIALS AND TECHNOLOGIES
  • Published:
Inorganic Materials: Applied Research Aims and scope

Abstract

In search for a drug-containing material when creating polymer-free drug-eluting stents, an analysis of the available literature is carried out. It is shown that one of the promising materials for this purpose is mesoporous silicon (the cross-sectional pore diameter is 2–50 nm), which has high biocompatibility and biodegradability. The main requirements for the porous silicon coating as a drug carrier of metal intravascular stents are formulated. The results of experimental studies are presented, including those performed by the authors, showing the possibility of continuous silicon coating application up to 0.6 μm thick on the stents by magnetron sputtering or plasma-immersion ion implantation and deposition (PIII@D). These methods provide high coating adhesion to the stent material and allow coating both on the external and internal stent surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Barquera, S., Pedroza-Tobias, A., Medina, C., et al., Global overview of the epidemiology of atherosclerotic cardiovascular disease, Arch. Med. Res., 2015, vol. 46, no. 5, pp. 328–338.

    Article  PubMed  Google Scholar 

  2. Bonsignore, G., A decade of evolution in stent design, Proc. Int. Conf. on Shape Memory and Superelastic Technologies (SMST–2003), Pelton, A.R. and Duerig, T., Eds., Materials Park, OH: ASM Int., 2004, pp. 519–528.

  3. Simard, T., Hibbert, B., Ramirez, F.D., Froeschl, M., et al., The evolution of coronary stents: a brief review, Can. J. Cardiol., 2014, vol. 30, pp. 35–45.

    Article  PubMed  Google Scholar 

  4. Meier, B., Use and abuse of coronary stenting, Hosp. Chron., 2006, vol. 1, suppl. 1, pp. 99–103.

    Google Scholar 

  5. Kalra, A., Rehman, H., Khera, S., Thyagarajan, B., et al., New-generation coronary stents: current data and future directions, Curr. Atheroscler. Rep., 2017, vol. 19, p. 14. https://doi.org/10.1007/s11883-017-0654-1

    Article  PubMed  Google Scholar 

  6. Wu, T. and McCarthy, S., Coronary arterial drug-eluting stent: from structure to clinical, in Coronary Artery Diseases, Chaikovsky, I. and Sydorova, N., Eds., London: InTechOpen, 2012, chap. 10.

  7. Steffel, J., Eberli, F.R., Luscher, T.F., and Tanner, F.C., Drug-eluting stents—What should be improved? Ann Med., 2008, vol. 40, no. 4, pp. 242–252.

    Article  CAS  PubMed  Google Scholar 

  8. Abizaid, A. and Costa, J.R., New drug-eluting stents: an overview on biodegradable and polymer-free next-generation stent systems, Circ.: Cardiovasc. Interventions, 2010, vol. 3, pp. 384–393.

    CAS  Google Scholar 

  9. Nakazawa, G., Finn, A.V., Joner, M., et al., Delayed arterial healing and increased late stent thrombosis at culprit sites after drug-eluting stent placement for acute myocardial infarction patients: an autopsy study, Circulation, 2008, vol. 118, pp. 1138–1145.

    Article  PubMed  Google Scholar 

  10. Virmani, R., Farb, A., Guagliumi, G., and Kolodgie, F.D., Drug-eluting stents: caution and concerns for long-term outcome, Coron. Artery Dis., 2004, vol. 15, pp. 313–318.

    Article  PubMed  Google Scholar 

  11. Hezi‑Yamit, A., Sullivan, C., Wong, J., et al., Impact of polymer hydrophilicity on biocompatibility: implication for DES polymer design, J. Biomed. Mater. Res., Part A, 2009, vol. 90, pp. 133–141.

    Article  CAS  Google Scholar 

  12. Middleton, J.C. and Tipton, A.J., Synthetic biodegradable polymers as orthopedic devices, Biomaterials, 2000, vol. 21, pp. 2335–2346.

    Article  CAS  PubMed  Google Scholar 

  13. Diletti, R., Serruys, P.W., Farooq, V., et al., ABSORB II randomized controlled trial: a clinical evaluation to compare the safety, efficacy, and performance of the Absorb everolimus-eluting bioresorbable vascular scaffold system against the XIENCE everolimus-eluting coronary stent system in the treatment of subjects with ischemic heart disease caused by de novo native coronary artery lesions: rationale and study design, Am. Heart J., 2012, vol. 164, pp. 654–663.

    Article  CAS  PubMed  Google Scholar 

  14. Heublein, B., Rohde, R., Kaese, V., et al., Biocorrosion of magnesium alloys: a new principle in cardiovascular implant technology? Heart, 2003, vol. 89, pp. 651–656.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Waksman, R., Biodegradable stents: They do their job and disappear, J. Invasive Cardiol., 2006, vol. 18, no. 2, pp. 70–74.

    PubMed  Google Scholar 

  16. Moravej, M., Purnama, A., Fiset, M., Couet, J., and Mantovani, D., Electroformed pure iron as a new biomaterial for degradable stents: in vitro degradation and preliminary cell viability studies, Acta Biomater., 2010, vol. 6, pp. 1843–1851.

    Article  CAS  PubMed  Google Scholar 

  17. Dave, V., Falotico, R., Li, Ch., Nguyen, T.M., Parker, T.L., and Zhao, D.Z., RF Patent 2526885, 2014.

  18. Shanley, J.F., US Patent 6 241 762, 2001.

  19. Byrne, R.A., Iijima, R., Mehilli, J., et al., Durability of antirestenotic efficacy in drug-eluting stents with and without permanent polymer, J. Am. Coll. Cardiol.: Cardiovasc. Interventions, 2009, vol. 2, pp. 291–299.

    Article  Google Scholar 

  20. Moore, P., Barlis, P., Spiro, J., et al., A randomized optical coherence tomography study of coronary stent strut coverage and luminal protrusion with rapamycineluting stents, J. Am. Coll. Cardiol.: Cardiovasc. Interventions, 2009, vol. 2, pp. 437–444.

    Article  Google Scholar 

  21. Kollum, M., Farb, A., Schreiber, R., et al., Particle debris from a nanoporous stent coating obscures potential antiproliferative effects of tacrolimus-eluting stents in a porcine model of restenosis, Catheter Cardiovasc. Interventions, 2005, vol. 64, pp. 85–90.

    Article  Google Scholar 

  22. Wieneke, H., Dirsch, O., Sawitowski, T., et al., Synergistic effects of a novel nanoporous stent coating and tacrolimus on intima proliferation in rabbits, Catheterization Cardiovasc. Interventions, 2003, vol. 60, pp. 399–407.

    Article  Google Scholar 

  23. Rajtar, A., Kaluza, G.L., Yang, Q., et al., Hydroxyapatite-coated cardiovascular stents, EuroIntervention, 2006, vol. 2, pp. 113–115.

    CAS  PubMed  Google Scholar 

  24. Costa, J.R., Abizaid, Al., Costa, R., et al., Preliminary results of the hydroxyapatite nonpolymer-based sirolimus-eluting stent for the treatment of single de novo coronary lesions a first-in-human analysis of a third-generation drug-eluting stent system, J. Am. Coll. Cardiol.: Cardiovasc. Interventions, 2008, vol. 1, pp. 545–551.

    Article  Google Scholar 

  25. Costa, J.R., Jr., Abizaid, A., Costa, R., et al., 1-Year results of the hydroxyapatite polymer-free sirolimus-eluting stent for the treatment of single de novo coronary lesions: the VESTASYNC I trial, J. Am. Coll. Cardiol.: Cardiovasc. Interventions, 2009, vol. 2, pp. 422–427.

    Article  Google Scholar 

  26. Mougeri, U.O.G., Beklemyshev, V.I., Makhonin, I.I., et al., RF Patent 2448741, 2012.

  27. Tang, C.J., Wang, G.X., Shen, Y., et al., A study on surface endothelialization of plasma coated intravascular stents, Surf. Coat. Technol., 2010, vol. 204, pp. 1487–1492.

    Article  CAS  Google Scholar 

  28. Loya, M.C., Brammer, K.S., Choi, Ch., et al., Plasmainduced nanopillars on bare metal coronary stent surface for enhanced endothelialization, Acta Biomater., 2010, vol. 6, pp. 4589–4595.

    Article  CAS  PubMed  Google Scholar 

  29. Liu, C.L., Chu, P.K., Lin, G.Q., and Qi, M., Anti-corrosion characteristics of nitride-coated AISI 316L stainless steel coronary stents, Surf. Coat. Technol., 2006, vol. 201, no. 6, pp. 2802–2806.

    Article  CAS  Google Scholar 

  30. Huang, N., Leng, Y.X., Yang, P., et al., Surface modification of coronary artery stent by Ti–O/Ti–N complex film coating prepared with plasma immersion ion implantation and deposition, Nucl. Instrum. Methods Phys. Res., Sect. B, 2006, vol. 242, nos. 1–2, pp. 18–21.

  31. Herman, R.A., Rybnikar, A., Resch, A., Märkl, B., Alt, E., Stemberger, A., and Schömig, A., Thrombogenicity of stainless steel coronary stents with a completely gold coated surface, J. Am. Coll. Cardiol., 1998, vol. 31, suppl. 2.

  32. Edelman, E., Seifert, P., Groothuis, A., Morss, A., Bornstein, D., and Rogers, C., Gold-coated NIR stents in porcine coronary arteries, Circulation, 2001, vol. 103, no. 3, pp. 429–434.

    Article  CAS  PubMed  Google Scholar 

  33. Bolz, A. and Schaldach, M., Artificial heart valves: improved blood compatibility by PECVD a-SiC:H coating, Artif. Organs, 1990, vol. 14, no. 4, pp. 260–269.

    Article  CAS  PubMed  Google Scholar 

  34. Monnink, S.H., van Boven, A.J., Peels, H.O., Tigchelaar, I., de Kam, P.J., Crijns, H.J., and van Oeveren, W., Silicon-carbide coated coronary stents have low platelet and leukocyte adhesion during platelet activation, J. Invest. Med., 1999, vol. 47, no. 6, pp. 304–310.

    CAS  Google Scholar 

  35. Kalnins, U., Erglis, A., Dinne, I., Kumsars, I., and Jegere, S., Clinical outcomes of silicon carbide coated stents in patients with coronary artery disease, Med. Sci. Monit., 2002, vol. 8, no. 2, pp. 116–120.

    Google Scholar 

  36. Gutensohn, K., Beythien, C., Bau, J., Fenner, T., Grewe, P., Koester, R., et al., In vitro analyses of diamond-like carbon coated stents. Reduction of metal ion release, platelet activation, and thrombogenicity, Thromb. Res., 2000, vol. 99, no. 6, pp. 577–585.

    Article  CAS  PubMed  Google Scholar 

  37. Kim, J.H., Shin, J.H., Shin, D.H., et al., Comparison of diamond-like carbon-coated nitinol stents with or without polyethylene glycol grafting and uncoated nitinol stents in a canine iliac artery model, Br. J. Radiol., 2011, vol. 84, no. 999, pp. 210–215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Cuong, N.K., Tahara, M., Yamauchi, N., and Sone, T., Diamond-like carbon films deposited on polymers by plasma-enhanced chemical vapor deposition, Surf. Coat. Technol., 2003, vol. 174, pp. 1024–1028.

    Article  CAS  Google Scholar 

  39. Leu, M.S., Chen, S.Y., Chang, J.J., Chao, L.G., and Lin, W., Diamond-like coatings prepared by the filtered cathodic arc technique for minting application, Surf. Coat. Technol., 2004, vol. 177, pp. 566–572.

    Article  CAS  Google Scholar 

  40. Sui, J.H., Cai, W., and Zhao, L.C., Surface modification of NiTi alloys using diamond-like carbon (DLC) fabricated by plasma immersion ion implantation and deposition (PIIID), Nucl. Instrum. Methods Phys. Res.,Sect. B, 2006, vol. 248, no. 1, pp. 67–70.

    CAS  Google Scholar 

  41. Macionczyk, F., Gerold, B., and Thull, R., Repassivating tantalum/tantalum oxide surface modification on stainless steel implants, Surf. Coat. Technol., 2001, vol. 142, pp. 1084–1087.

    Article  Google Scholar 

  42. Windecker, S., Mayer, I., De Pasquale, G., et al., Stent coating with titanium-nitride-oxide for reduction of neointimal hyperplasia, Circulation, 2001, vol. 104, pp. 928–933.

    Article  CAS  PubMed  Google Scholar 

  43. Windecker, S., Simon, R., Lins, M., et al., Randomized comparison of a titanium-nitride-oxide-coated stent with a stainless steel stent for coronary revascularization: the tinox trial, Circulation, 2005, vol. 111, pp. 2617–2622.

    Article  CAS  PubMed  Google Scholar 

  44. Pareta, R.A., Nimmy, M., Yokogawa, Y., and Harikrishna, V., Pulsed laser deposition of hydroxyapatite on nanostructured titanium towards drug eluting implants, Mater. Sci. Eng., C, 2013, vol. 33, pp. 2899–2904.

    Article  CAS  Google Scholar 

  45. Arruebo, M., Drug delivery from structured porous inorganic materials, WIREs Nanomed.Nanobiotechnol., 2012, vol. 4, pp. 16–30.

    Article  CAS  Google Scholar 

  46. Ksenofontova, O.I., Vasin, A.V., Egorov, V.V., et al., Porous silicon and its application in biology and medicine, Tech. Phys., 2014, vol. 59, no. 1, pp. 66–77.

    Article  CAS  Google Scholar 

  47. Properties of Porous Silicon, Canham, L., Ed., London: Inst. Electr. Eng., 1997.

    Google Scholar 

  48. Foraker, A.B., Walczak, R.J., Cohen, M.H., et al., Microfabricated porous silicon particles enhance paracellular delivery of insulinacross intestinal Caco-2 cell monolayers, Pharmacol. Res., 2003, vol. 20, pp. 110–116.

    Article  CAS  Google Scholar 

  49. Zimin, S.P., Porous silicon—material with new properties, Sorosovskii Obraz. Zh., 2004, vol. 8, no. 1, pp. 101–107.

    Google Scholar 

  50. Anglin, E.J., Cheng, L., Freeman, W.R., and Sailor, M.J., Porous silicon in drug delivery devices and materials, Adv. Drug. Delivery Rev., 2008, vol. 60, pp. 1266–1277.

    Article  CAS  Google Scholar 

  51. Tasciotti, E., Plant, K., Bhavane, R., et al., Nanoporous silicon particles as a multistage delivery system for imaging and therapeutic applications, Nat. Nanotechnol., 2008, vol. 3, pp. 151–157.

    Article  CAS  PubMed  Google Scholar 

  52. Gu, L., Park, J.H., Duong, K.H., Ruoslahti, E., and Sailor, M.J., Magnetic luminescent porous silicon microparticles for localized delivery of molecular drug payloads, Small, 2010, vol. 6, pp. 2546–2552.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Haidary, S.M., Córcoles, E.P., and Ali, N.K., Nanoporous silicon as drug delivery systems for cancer therapies, J. Nanomater., 2012, vol. 2012, art. ID 830503.

    Article  CAS  Google Scholar 

  54. Postnov, V.N., Naumysheva, E.B., Korolev, D.V., and Galagudza, M.M., Nano-sized carriers for drug delivery, Biotekhnosfera, 2013, vol. 6, no. 30, pp. 16–27.

    Google Scholar 

  55. Polkovnikova, Yu.A., The use of porous silicon as a prospective carrier of medical drugs, Vestn. Voronezh. Gos. Univ., Ser.: Khim., Biol., Farm., 2017, no. 4, pp. 124–129.

  56. Yurakov, Yu.A., Lenshin, A.S., and Seredin, P.V., Poluchenie poristogo kremniya (Formation of Porous Silicon), Voronezh: Voronezh. Gos. Univ., 2014.

  57. Lenshin, A.S., Kashkarov, V.M., and Seredin, P.V., RF Patent 2572128, 2015.

  58. Yuzova, V.A., Levitsky, A.A., and Harlashin, P.A., Advances in porous silicon technology and research, Zh. Sib. Fed. Univ.,Ser.: Tekh. Tekhnol., 2011, vol. 1, no. 4, pp. 92–112.

    Google Scholar 

  59. Shevchenko, V.Ya., Kiselev, O.I., and Sokolov, V.N., Issledovaniya, tekhnologiya i ispol’zovanie nanoporistykh nositelei lekarstv v meditsine (Research, Technology, and Use of Nanoporous Drug Carriers in Medicine), St. Petersburg: Khimizdat, 2015.

  60. Laaksonen, T., Santos, H., Vihola, H., et al., Failure of MTT as a toxicity testing agent for mesoporous silicon microparticles, Chem. Res. Toxicol., 2007, vol. 20, pp. 1913–1918.

  61. Shtansky, D.V., Gloushankova, N.A., Sheveiko, A.N., et al., Si-doped multifunctional bioactive nanostructured films, Surf. Coat. Technol., 2010, vol. 205, pp. 728–739.

    Article  CAS  Google Scholar 

  62. Shie, M.-Y., Ding, S.-J., and Chang, H.-C., The role of silicon in osteoblast-like cell proliferation and apoptosis, Acta Biomater., 2011, vol. 7, pp. 2604–2614.

    Article  CAS  PubMed  Google Scholar 

  63. Qian, S. and Liu, X., Effect of Si-incorporation on hydrophilicity and bioactivity of titania film, Surf. Coat. Technol., 2013, vol. 229, pp. 156–161.

    Article  CAS  Google Scholar 

  64. Cao, H. and Liu, X., Activating titanium oxide coatings for orthopedic implants, Surf. Coat. Technol., 2013, vol. 233, pp. 57–64.

    Article  CAS  Google Scholar 

  65. Lotkov, A.I., Kashin, O.A., Kudryavtseva, Yu.A., et al., Interaction of human endothelial cells and nickeltitanium materials modified with silicon ions, AIP Conf. Proc., 2015, vol. 1683, art. ID 020126.

    Article  CAS  Google Scholar 

  66. Velichko, R.V., Gusev, E.Yu., Gamaleev, V.A., Mikhno, A.S., and Bychkova, A.S., PECVD analysis of nano- and polycrystalline silicon films, Fundam. Issled., 2012, no. 11, pp. 1176–1179.

  67. Strunin, V.I., Baranova, L.V., and Khudaibergenov, G.Zh., RF Patent 2165476, 2001.

  68. Aston, R. and Canham, L.T., US Patent 7186267, 2007.

  69. Meisner, S.N. and Lotkov, A.I., Surface morphology and elemental composition of Si coatings deposited on NiTi substrates in different magnetron sputtering modes, Izv. Vyssh. Uchebn. Zaved., Fiz., 2009, 52, no. 12-2, pp. 85–88.

  70. Kashin, O.A., Lotkov, A.I., Kudryashov, A.N., et al., Structural phase states in nickel-titanium surface layers doped with silicon by plasma immersion ion implantation, AIP Conf. Proc., 2015, vol. 1683, art. ID 020078.

    Article  CAS  Google Scholar 

  71. Lotkov, A.I., Kashin, O.A., Borisov, D.P., et al., Effect of plasma immersion ion beam processing on the structurephase state and the properties of the surface layers in titanium nickelide samples, Russ. Metall. (Engl. Transl.), 2017, vol. 4, pp. 250–254.

  72. Kashin, O.A., Lotkov, A.I., Borisov, D.P., et al., Plasma immersion ion implantation for surface treatment of complex branched structures, AIP Conf. Proc., 2016, vol. 1783, art. ID 020082.

    Article  CAS  Google Scholar 

  73. Lotkov, A.I., Kashin, O.A., Kudryashov, A.N., and Krukovsky, K.V., Structure and properties of self-expanding intravascular NiTi stents doped with Si ions, Mater. Today Proc., 2017, vol. 4, pp. 4647–4651.

    Article  Google Scholar 

  74. Borisov, D.P., Slabodchikov, V.A. and Kuznetsov, V.M., Plasma source based on an unbalanced magnetron sputtering system, IOP Conf. Ser.: J. Phys., 2017, vol. 830, art. ID 012057.

  75. Borisov, D.P., Detistov, K.N., Korotaev, A.D., et al., SPRUT vacuum plasma technological complex for creating the new nanocomposite materials and hardening surfaces structures, Zavod. Lab.,Diagn. Mater., 2010, vol. 76, no. 12, pp. 32–36.

    CAS  Google Scholar 

Download references

Funding

The work was carried out as part of the Program of Fundamental Scientific Research of the State Academies of Sciences of the Russian Federation for 2013–2020, project III.23.2.2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. A. Kashin.

Additional information

Translated by A. Kolemesin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kashin, O.A., Krukovskii, K.V. & Lotkov, A.I. Potential and Capabilities of Porous Silicon as a Material for Intravascular Drug-Eluting Stents: Brief Summary. Inorg. Mater. Appl. Res. 11, 287–296 (2020). https://doi.org/10.1134/S2075113320020161

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075113320020161

Keywords:

Navigation