Skip to main content
Log in

Effect of Cooling Rate under Quenching on the Structure and Properties of Sheets Made of High-Tech Alloy V-1341 of the Al–Mg–Si System

  • Published:
Inorganic Materials: Applied Research Aims and scope

Abstract

Phase transformations for alloy V-1341 of the Al–Mg–Si system under cooling from quenching temperature are investigated by differential scanning calorimetry and by transmission electron microscopy. An isothermal phase transformation diagram is generated by a design-experiment method. It is shown that the proposed method developed according to quenching factor theory makes it possible to predict reliably the dispersion hardening as a function of cooling rate for sheets made of alloy V-1341.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Antipov, V.V., Prospective development of aluminum, magnesium, and titanium alloys for aerospace industry, Aviats. Mater. Tekhnol., 2017, suppl., pp. 186–194. https://doi.org/10.18577/2071-9140-2017-0-S-186 194

  2. Antipov, V.V., Klochkova, Yu.Yu., and Romanenko, V.A., Modern aluminum and aluminum-lithium alloys, Aviats. Mater. Tekhnol., 2017, suppl., pp. 195–211. https://doi.org/10.18577/2071-9140-2017-0-S-195-211

  3. Kuznetsov, A.O., Oglodkov, M.S., and Klimkina, A.A., Effect of chemical composition on the structure and properties of Al–Mg–Si alloy system, Tr. Vseross. Nauchno-Issled. Inst. Aviats. Mater., 2018, no. 7 (67), art. ID 1. https://doi.org/10.18577/2307-6046-2018-0-7-3-9. http://www.viam-works.ru. Accessed July 15, 2018.

  4. Staley, J.T., Quench factor analysis of aluminum alloys, Mater. Sci. Technol., 1987, vol. 3, no. 11, pp. 923–935.

    Article  CAS  Google Scholar 

  5. Puchkov, Yu.A. and Berezina, S.L., Use of the theory of hardening factor for predicting the properties of articles from heat-hardenable aluminum alloy V91, Met. Sci. Heat Treat., 2014, vol. 56, nos. 3–4, pp. 131–136.

  6. Bratland, D.H., et al., Overview No. 124 Modelling of precipitation reactions in industrial processing, Acta Mater., 1997, vol. 45, no. 1, pp. 1–22.

    Article  CAS  Google Scholar 

  7. Benarieb, I. and Puchkov, Yu.A., Development of a method for computing temperature-time-property C-curves for deformable Al–Mg–Si alloys, Zagotovitel’nye Proizvod.Mashinostr., 2018, vol. 16, no. 2, pp. 83–89.

    Google Scholar 

  8. Kablov, E.N., Strategic development of materials and technologies for their processing until 2030, Aviats. Mater. Tekhnol., 2012, no. 5, pp. 7–17.

  9. Fridlyander, I.N., Grushko, O.E., and Sheveleva, L.M., Heat hardened alloy V1341 for cold pressing of sheets, Met. Sci. Heat Treat., 2004, vol. 46, nos. 9–10, pp. 361–364.

  10. Kablov, E.N., Grushko, O.E., and Grinevich, A.V., “Flying metal” for automobile industry, Gruzovik, 2005, no. 10, pp. 16–24.

  11. Ovchinnikov, V.V. and Grushko, O.E., Advanced welded aluminum alloy of Al–Mg–Si system, Mashinostr. Inzh. Obraz., 2005, no. 3, pp. 2–11.

  12. Klochkov, G.G., Grushko, O.E., Ovchinnikov, V.V., and Popov, V.I., Commercial production of high-technology alloy V-1341 of the Al–Mg–Si system with calcium addition, Met. Sci. Heat Treat., 2015, vol. 57, nos. 1–2, pp. 9–12.

  13. Gureyeva, M.A. and Grushko, O.E., Homogenization conditions and mechanical properties of ingots of calcium-doped AV alloy, Inorg. Mater.: Appl. Res., 2016, vol. 7, no. 4, pp. 582–585.

    Article  Google Scholar 

  14. Klochkov, G.G., Klochkova, Yu.Yu., and Romanenko, V.A., Influence of deformation temperature on the structure and properties of pressed profiles of V-1341 alloy of Al–Mg–Si system, Tr. Vseross. Nauchno-Issled. Inst. Aviats. Mater., 2016, no. 9 (45), art. ID 1. https://doi.org/10.18577/2307-6046-2016-0-9-1-1. http://www.viam-works.ru. Accessed February 15, 2018.

  15. Klochkov, G.G., Ovchinnikov, V.V., Klochkova, Yu.Yu., and Romanenko, V.A., The structure and properties of sheets from high-tech V-1341 alloy of Al–Mg–Si system, Tr. Vseross. Nauchno-Issled. Inst. Aviats. Mater., 2017, no. 12 (60), art. ID 3. https://doi.org/10.18577/2307-6046-2017-0-12-3-3. http://www.viam-works.ru. Accessed February 15, 2018.

  16. Alekseev, A.A. and Ber, L.B., Diagrams of phase transformations during aging of alloys of Al–Cu and Al–Mg–Si–(Cu) systems, Tekhnol. Legk. Splavov, 1991, no. 3, pp. 18–20.

  17. Kablov, E.N., Lukina, E.A., Svitneva, S.V., et al., Formation of metastable phases during solid solution decay during artificial aging of Al alloys, Tekhnol. Legk. Splavov, 2016, no. 3, pp. 7–17.

  18. Davydov, V.G., Zakharov, V.V., Zakharov, E.D., and Novikov, I.I., Diagrammy izotermicheskogo raspada rastvora v alyuminievykh splavakh. Spravochnik (Diagrams of Isothermal Decay of Solution in Aluminum Alloys: Handbook), Novikov, I.I., Ed., Moscow: Metallurgiya, 1973.

    Google Scholar 

  19. Ryabov, D.K., Kolobnev, N.I., Makhsidov, V.V., and Fomina, M.A., Stability of a supersaturated solid solution of 1913 alloy sheets during quenching, Metall. Mashinostr., 2012, no. 3, pp. 30–33.

  20. Zakharov, V.V. and Fisenko, I.A., Effect of homogenization on the structure and properties of alloy of the Al–Zn–Mg–Sc–Zr system, Met. Sci. Heat Treat., 2018, vol. 60, nos. 5–6, pp. 354–359.

  21. Puchkov, Yu.A. and Fam Khong Fu, Effect of quenching cooling modes on the structure and properties of alloys of the Al–Mg–Si system, Zagotovitel’nye Proizvod. Mashinostr., 2016, no. 4, pp. 37–42.

  22. Milkereit, B., Schick, C., and Kessler, O., Continuous cooling precipitation diagrams depending on the composition of aluminum-magnesium-silicon alloys, Proc. 12th Int. Conf. on Aluminum Alloys, Tokyo: Jpn. Inst. Light Met., 2010, pp. 407–412.

  23. Shang, B.C., et al., Investigation of quench sensitivity and transformation kinetics during isothermal treatment in 6082 aluminum alloy, Mater. Des., 2011, vol. 32, no. 7, pp. 3818–3822.

    Article  CAS  Google Scholar 

  24. Li, H., Zeng, C., Han, M., Liu, J., and Lu, X., Time-temperature-property curves for quench sensitivity of 6063 aluminum alloy, Trans. Nonferrous Met. Soc. China, 2013, vol. 23, pp. 38–45.

    Article  CAS  Google Scholar 

  25. Milkereit, B., Giersberg, L., Kessler, O., and Schick, C., Isothermal time-temperature precipitation diagram for an aluminum alloy 6005A by in situ DSC experiments, Materials, 2014, vol. 7, pp. 2631–2649.

    Article  CAS  Google Scholar 

  26. Milkereit, B. and Starink, M.J., Quench sensitivity of Al–Mg–Si alloys: A model for linear cooling and strengthening, Mater. Des., 2015, vol. 76, pp. 117–129.

    Article  CAS  Google Scholar 

  27. Loshchinin, Yu.V., Pakhomkin, S.I., and Fokin, A.S., The influence of the heating rate in the study of phase transformations in aluminum alloys by differential scanning calorimetry, Aviats. Mater. Tekhnol., 2011, no. 2, pp. 3–6.

Download references

ACKNOWLEDGMENTS

We thank S.I. Pakhomov and A.V. Zavadskii (All-Russian Scientific Research Institute of Aviation Materials) for the invaluable contribution to our investigations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Benariev.

Additional information

Translated by Yu. Zikeeva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benariev, I., Puchkov, Y.A., Klochkov, G.G. et al. Effect of Cooling Rate under Quenching on the Structure and Properties of Sheets Made of High-Tech Alloy V-1341 of the Al–Mg–Si System. Inorg. Mater. Appl. Res. 11, 202–207 (2020). https://doi.org/10.1134/S2075113320010074

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075113320010074

Keywords:

Navigation