Skip to main content
Log in

Gold Nanoparticles in Bimetallic Nanoparticle Systems: Synthesis, Properties, and Application

  • Published:
Inorganic Materials: Applied Research Aims and scope

Abstract—Data on the most frequently mentioned systems consisting of bimetallic nanoparticles, one of the components of which are gold nanoparticles, are generalized and systematized. Methods of their preparation affecting their structural characteristics are described. Optical and other properties and advantages in their directed application in various fields are shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Ogarev, V.A., Rudoi, V.M., and Dement’eva, O.V., Gold nanoparticles: synthesis, optical properties, and application, Inorg. Mater.: Appl. Res., 2018, vol. 9, no. 1, pp. 134–140.

    Article  Google Scholar 

  2. Cheng, M., Zhu, M., Du, Y., and Yang, P., Enhanced photocatalitic hydrogen evolution based on efficient electron transfer in triphenylamine-based dye functionalized Au/Pt bimetallic core/shell nanocomposite, Int. J. Hydrogen Energy, 2013, vol. 38, no. 21, pp. 8631–8638.

    Article  CAS  Google Scholar 

  3. Dao, V.-D., Choi, Y., Yong, K., Larina, L.L., Shevaleevskiy, O., and Choi, H.-S., A facile synthesis bimetallic AuPt nanoparticles as a new transparent counter electrode for quantum-dot-sensitized solar cells, J. Power Sources, 2015, vol. 274, pp. 831–838.

    Article  CAS  Google Scholar 

  4. Mott, D., Luo, J., Njoki, P.N., Lin, Y., Wang, L., and Zhong, Ch.-J., Synergistic activity of gold-platinum alloy nanoparticles catalysts, Catal. Today, 2007, vol. 122, nos. 3–4, pp. 378–385.

  5. Rabis, A., Rodniguez, P., and Schmidt, T.J., Electrocatalysis in polymer electrolyte fuel cells: recent achievements and future challenges, ACS Catal., 2012, vol. 2, no. 5, pp. 864–890.

    Article  CAS  Google Scholar 

  6. Feng, R., Li, M., and Liu, J., Synthesis of core–shell Au@Pt nanoparticles supported on Vulcan XC-72 carbon and their electrocatalytic activities for methanol oxidation, Colloids Surf., A, 2012, vol. 406, pp. 6–12.

    Article  CAS  Google Scholar 

  7. Giorgi, L., Salemitano, E., Dikonimos Makris, Th., Gagliardi, S., Contini, V., and De Francesco, M., Innovative electrodes for direct methanol fuel cells based on carbon nanofibers and bimetallic PtAu nanocatalysts, Int. J. Hydrogen Energy, 2014, vol. 39, no. 36, pp. 21601–21612.

    Article  CAS  Google Scholar 

  8. Haruta, M., Size-and support dependency in the catalysis of gold, Catal. Today, 1997, vol. 36, no. 1, pp. 153–166.

    Article  CAS  Google Scholar 

  9. Zhou, W., Li, M., Zhang, L., and Chan, S.H., Supported PtAu catalysts with different nano-structures for ethanol electrooxidation, Electrochem. Acta, 2014, vol. 123, pp. 233–239.

    Article  CAS  Google Scholar 

  10. Lu, D., Zhang, Y., Lin, Sh., Wang, L., and Wang, Ch., Synthesis of PtAu bimetallic nanoparticles on graphene-carbon nanotube hybrid nanomaterials for nonenzymatic hydrogen peroxide sensor, Talanta, 2013, vol. 112, pp. 111–116.

    Article  CAS  PubMed  Google Scholar 

  11. Cui, M., Huang, J., Wang, Y., Wu, Y., and Luo, X., Molecularly imprinted electrochemical sensor for propyl gallate based on PtAu bimetallic nanoparticles modified grapheme-carbon nanotube composites, Biosens. Bioelectron., 2015, vol. 68, pp. 563–569.

    Article  CAS  PubMed  Google Scholar 

  12. Cao, X., Wang, N., Jia, S., Guo, L., and Li, K., Bimetallic AuPt nanochains: synthesis and their application in electrochemical immunosensors for the detection of carcinoembryonic antigen, Biosens. Bioelectron., 2013, vol. 39, no. 1, pp. 226–230.

    Article  CAS  PubMed  Google Scholar 

  13. Han, T., Zhang, Y., Xu, J., Dong, J., and Liu, Ch-Ch., Monodisperse Au–M (M = Pd, Rh, Pt) bimetallic nanocrystals for enhanced electrochemical detection of H2O2, Sens. Actuators, B, 2015, vol. 207, pp. 404–412.

    Article  CAS  Google Scholar 

  14. Nasrollahzaden, M., Azarian, A., Maham, M., and Ehsani, A., Synthesis of Au/Pd bimetallic nanoparticles and their application in the Suzuki coupling reaction, J. Ind. Eng. Chem., 2015, vol. 21, pp. 746–748.

    Article  CAS  Google Scholar 

  15. Venkatesan, P. and Santhanalakshmi, J., Core-shell bimetallic Au–Pd nanoparticles: synthesis, structure, optical and catalytic properties, Nanosci. Nanotechnol., 2011, vol. 1, no. 2, pp. 43–47.

    Article  Google Scholar 

  16. Cubala, A., Priebe, J.B., Pohl, M.-M., Sobczak, J.W., Schneider, M., Zielinska-Jurek, A., Bruckner, A., and Zaleska, A., The effect of calcinations temperature on structure and photocatalytic properties of Au/Pd nanoparticles supported on TiO2, Appl. Catal. B, 2014, vols. 152–153, pp. 202–211.

  17. Zhao, D., Chen, X., Lin, Y., Wu, Ch., Ma, R., An, Y., and Shi, L., Thermosensitive and pH-sensitive Au–Pd bimetallic nanocomposites, J. Colloid Interface Sci., 2009, vol. 331, no. 1, pp. 104–112.

    Article  CAS  PubMed  Google Scholar 

  18. Li, T., Zhou, H., Huang, J., Yin, J., Chen, Z., Lin, D., Zhang, N., and Kuang, Y., Facile preparation of Pd–Au bimetallic nanoparticles via in-situ self-assembly in reverse microemulsion and their electrocatalitic properties, Colloids Surf., A, 2014, vol. 463, pp. 55–62.

    Article  CAS  Google Scholar 

  19. Kuhn, M., Jeschke, J., Schulze, S., Hietschold, M., Lang, H., and Schwarz, Th., Dendrimer-stabilized bimetallic Pd/Au nanoparticles: preparation, characterization and application to vinyl acetate synthesis, Catal. Commun., 2014, vol. 57, pp. 78–82.

    Article  CAS  Google Scholar 

  20. Yu, H. and He, Y., Seed-assisted synthesis of dendritic Au–Ag bimetallic nanoparticles with chemiluminscence activity and their application in glucose detection, Sens. Actuators, B, 2015, vol. 209, pp. 877–882.

    Article  CAS  Google Scholar 

  21. Bankura, K., Maity, D., Mollick, M.R. Mondal, D., Bhowmick, B., Roy, I., Midya, T., Sarkar, J., Rana, D., Acharya, K., and Chattopadhyay, D., Antibacterial activity of Ag–Au alloy NPs and chemical sensor property of Au NPs synthesized by dextran, Carbohydr. Polym., 2014, vol. 107, pp. 151–157.

    Article  CAS  PubMed  Google Scholar 

  22. Bankura, K., Maity, D., Mollick, M.R., Mondal, D., Bhowmick, B., Bain, M.K., et al., Synthesis, characterization and antimicrobial activity of dextran stabilized silver nanoparticles in aqueous medium, Carbohydr. Polym., 2012, vol. 89, pp. 1159–1165.

    Article  CAS  PubMed  Google Scholar 

  23. Meena Kumari, M., Jacob, J., and Philip, D., Green synthesis and applications of Au–Ag bimetallic nanoparticles, Spectrochim. Acta, Part A, 2015, vol. 137, pp. 185–192.

    Article  CAS  Google Scholar 

  24. Mondal, S., Roy, N., Laskar, R.A., Sk, I., Basu, S., Mondal, D., and Begum, N.A., Biogenic synthesis of Ag, Au and bimetallic Au/Ag alloy nanoparticles using aqueous extract of mahogany (Swietenia mahogani JACQ.) leaves, Colloids Surf., B, 2011, vol. 82, no. 2, pp. 497–504.

    Article  CAS  Google Scholar 

  25. Jacob, J., Mukherjee, T., and Kappor, S., A simple approach for facile synthesis of Ag, anisotropic Au and bimetallic (Ag/Au) nanoparticles using cruciferous vegetable extracts, Mater. Sci. Eng., C, 2012, vol. 32, no. 7, pp. 1827–1834.

    Article  CAS  Google Scholar 

  26. Shankar, S.S., Rai, A., Ahmad, A., and Sastry, M., Rapid synthesis of Au, Ag and bimetallic Au core-Ag shell nanoparticles using neem (Azadirachta indica) leaf broth, J. Colloid Interface Sci., 2004, vol. 275, no. 2, pp. 496–502.

    Article  CAS  PubMed  Google Scholar 

  27. Neppolian, B., Wang, Ch., and Ashokkumar, M., Sonochemically synthesized mono and bimetallic Au–Ag reduced grapheme oxide based nanocomposites with enhanced catalytic activity, Ultrason. Sonochem., 2014, vol. 21, no. 6, pp. 1948–1953.

    Article  CAS  PubMed  Google Scholar 

  28. Ghodselahi, T., Arsalani, S., and Neishaboorynejad, T., Synthesis and biosensor application of Ag/Au bimetallic nanoparticles based on localized surface plasmon resonance, Appl. Surf. Sci., 2014, vol. 301, pp. 230–234.

    Article  CAS  Google Scholar 

  29. Kannan, P., Yoon, Ch.-S., Yi, S.-Ch., Lee, S.Y., and Kim, D.-H., Shape-controlled synthesis of gold-nickel bimetallic nanoparticles and their electrocatalitic properties, Mater. Chem. Phys., 2015, vol. 156, pp. 1–8.

    Article  CAS  Google Scholar 

  30. Xie, H., Ye, X., Duan, K., Xue, M., Dn, Y., Ye, W., and Wang, C., CuAu–ZnO–grapheme nanocomposite: a novel grapheme-based bimetallic alloy-semiconductor catalyst with its enhanced photocatalytic degradation performance, J. Alloys Compd., 2015, vol. 636, pp. 40–47.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Ogarev.

Additional information

Translated by V. Avdeeva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ogarev, V.A., Dement’eva, O.V. & Rudoi, V.M. Gold Nanoparticles in Bimetallic Nanoparticle Systems: Synthesis, Properties, and Application. Inorg. Mater. Appl. Res. 10, 918–926 (2019). https://doi.org/10.1134/S2075113319040294

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075113319040294

Navigation