Skip to main content

Historical Introduction to Gold Colloids, Clusters and Nanoparticles

  • Chapter
  • First Online:
Gold Clusters, Colloids and Nanoparticles I

Part of the book series: Structure and Bonding ((STRUCTURE,volume 161))

Abstract

Colloidal gold is a suspension of sub-micrometre-sized particles of gold in a fluid either water or an organic solvent. Although the gold colloids cannot be viewed using optical microscopy, the sol has an intense colour (red for particles less than 100 nm or blue/purple for larger particles). The unique optical, electronic and molecular recognition properties of gold colloids have attracted substantial interest in recent years. The properties and applications of colloidal gold particles strongly depend upon their size and shape. For example, rod-like particles have both transverse and longitudinal absorption peaks, and the anisotropy of their shapes influences their self-assembly. Gold colloids and nanoparticles have found applications in electron microscopy, electronics, nanotechnology, materials science and medicine. The development of straightforward syntheses of gold colloids in organic solvents has had a major impact on the field and the development of etching and focusing techniques has led to the isolation of some monodispersed crystalline samples which have been characterised at the atomic level. Simultaneously the isolation of molecular cluster compounds of gold, initially stabilised by phosphine and more recently organothiolato ligands, has resulted in the characterisation at the atomic level of metal particles with 3–100s of atoms. These developments have provided interesting insights into the relationships between colloids and clusters. As the diameters of these species approach the nanoscale, interesting chemical, physical and catalytic properties have emerged.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ANP:

Gold nanoparticle

Ar:

Aryl

ccp:

Cubic close packed

ccs:

Collision cross section

dppe:

bis(diphenylphosphino)ethane

dppm:

bis(diphenylphosphino)methane

dppp:

bis(diphenylphosphino)propane

DFT:

Density functional theory

DOSY:

Diffusion-ordered spectroscopy

ESI-MS:

Electrospray mass spectrometry

Et:

Ethyl

EXAFS:

Extended X-ray absorption fine structure

FABS:

Fast atom bombardment mass spectrometry

FELIX:

Free electron laser for infrared

GSH:

Glutathione

hcp:

Hexagonal close packed

HAADF:

High-angle annular dark-field imaging

HOMO:

Highest occupied molecular orbital

HRTEM:

High-resolution transmission electron microscopy

i-Pr:

Isopropyl

IM-MS:

Combined ion mobility mass spectrometry

IMS:

Ion mobility mass spectrometry

LDI-MS:

Laser desorption/ionisation mass spectrometry

LUMO:

Lowest unoccupied molecular orbital

MALDI:

Matrix-assisted laser desorption and ionisation (mass spectrometry)

MBA:

Mercapto-benzoic acid

Me:

Methyl

Mes:

Mesityl, 2,4,6-trimethylphenyl (not methanesulfonyl)

MS:

Mass spectrometry

octyl:

n-octyl

Pc:

Phthalocyanine

Ph:

Phenyl

Pr:

Propyl

PAGE:

Polyacrylamide gel electrophoresis

PPTT:

Plasmonic photothermal therapy

ROS:

Reactive oxygen species

SAXS:

Small-angle X-ray scattering

SEC:

Size-exclusion chromatography

SEM:

Scanning electron microscopy

SERS:

Surface-enhanced Raman spectroscopy

SP:

Surface plasmon

SPR:

Surface plasmon resonance

SR:

Organothiolato ligands

t-Bu:

tert-butyl

TEM:

Transmission electron microscopy

TGA:

Thermogravimetric analysis

Tio:

Tiopronin

Tol:

4-Methylphenyl

TOAB:

Tetra(n-octyl)ammonium bromide

XRD:

X-ray diffraction

References

  1. Landgraf G (1999) Gold in decoration of glass and ceramics. In: Schmidbaur H (ed) Gold: progress in chemistry, biochemistry and technology. Wiley, Chichester

    Google Scholar 

  2. Edwards PP, Thomas JM (2007) Gold in a metallic divided state – from Faraday to present day nanoscience. Angew Chem Int Ed 46:5480–5486

    CAS  Google Scholar 

  3. Edwards PP (1992) Probing the nature of divided metals. Mat Res Soc Symp Proc 272:311–328

    CAS  Google Scholar 

  4. Faraday M (1857) Bakerian lecture – experimental relations of gold (and other metals) to light. Phil Trans R Soc Lond 147:145–181

    Google Scholar 

  5. Graham TH (1861) Phil Trans R Soc Lond 151:1183–1196

    Google Scholar 

  6. Mie G (1908) Ann Phys (Leipzig) 25:377–445

    CAS  Google Scholar 

  7. Schmid G (2005) Nanoparticles from theory to applications. Wiley-VCH, Weinheim

    Google Scholar 

  8. Schmid G (2008) Clusters and colloids – from theory to applications. Wiley-VCH, Weinheim

    Google Scholar 

  9. Curuso F (2008) Colloids and colloid assemblies – synthesis modification, organization and utilization of colloid particles. Wiley-VCH, Weinheim

    Google Scholar 

  10. Fendler JH (2008) Nanoparticles and nanostructured films – preparation, characterization and applications. Wiley-VCH, Weinheim

    Google Scholar 

  11. Halaciuga I (2008) Formation mechanisms of metal colloids. Clarkson University Press, USA

    Google Scholar 

  12. Feldheim DL, Foss CA Jr (2002) Metal nanoparticles – synthesis, characterization, applications. Marcel Dekker, New York

    Google Scholar 

  13. Johnston RL, Wilcoxon JP (2012) Metal nanoparticles and nanoalloys. Elsevier, Amsterdam

    Google Scholar 

  14. Rai M, Duran NE (2011) Metal nanoparticles in microbiology. Springer, Heidelberg

    Google Scholar 

  15. Jennings T, Strouse G (2007) Past, present and future of gold nanoparticles. Adv Exp Med Biol 620:34–47

    Google Scholar 

  16. Sau TK, Rogach AL (2012) Complex shaped metal nanoparticles, bottom-up syntheses and applications. Wiley-VCH, Weinheim

    Google Scholar 

  17. Mott DM (2008) Synthesis, characterization of nanoparticles. UMI, Ann Arbor

    Google Scholar 

  18. Chang H-T, Chau L-K (2012) From bioimaging to biosensors, noble metal nanoparticles in biodetection. Pan Stanford Publishing Pte Ltd, Singapore

    Google Scholar 

  19. Niedelberger M, Pinna N (2009) Metal oxide nanoparticles in organic solvents, synthesis, formation, assembly and engineering, materials and processes. Springer, Heidelberg

    Google Scholar 

  20. Klimov VI (2004) Semiconductor and metal nanocrystals – synthesis, electronic structures, optical properties and characterization. Marcel Dekker, New York

    Google Scholar 

  21. Rotello VM (2004) Nanoparticle building blocks for nanotechnology. Springer, Heidelberg

    Google Scholar 

  22. Astruc D (2008) Nanoparticles in catalysis. Wiley-VCH, Weinheim

    Google Scholar 

  23. Rao CNR, Thomas PJ, Kulkarni GU (2007) Nanoparticles – synthesis, preparation, and applications. Springer, Heidelberg

    Google Scholar 

  24. Mariscal MM, Oviedo OA, Leiva EPM (2013) Model clusters and nanoalloys – from models to applications. Springer, Heidelberg

    Google Scholar 

  25. McNaught AD, Wilkinson A (1997) Compendium of chemical terminology, the gold book, vol 2. Blackwell, Oxford

    Google Scholar 

  26. Duff DG, Baiker A, Edwards PP (1993) A new hydrosol of gold clusters. J Chem Soc Chem Commun 96–98

    Google Scholar 

  27. Duff DG, Curtis AC, Edwards PP, Jefferson DA, Johnson BFG, Kirkland AI, Logan DE (1987) The morphology and microstructure of colloidal silver and gold. Angew Chem Int Ed Engl 26:676–678

    Google Scholar 

  28. Aldrich Chemicals http://www.sigmaaldrich.com/materials-science/nanomaterials/gold-anoparticles.html

  29. Mingos DMP (1996) Gold – a flexible friend in cluster chemistry. J Chem Soc Dalton Trans 561–566

    Google Scholar 

  30. Mingos DMP (1993) Recent developments in the cluster chemistry of gold. Chemistry of the Copper and Zinc Triads. Roy Soc Chem Spec Publ 131:189–197

    Google Scholar 

  31. Mingos DMP (1992) High-nuclearity clusters of the transition metals and a re-evaluation of the cluster surface analogy. J Cluster Sci 3:397–409

    CAS  Google Scholar 

  32. Mingos DMP, Watson MJ (1992) Heteronuclear gold cluster compounds. Adv Inorg Chem 39:327–399

    CAS  Google Scholar 

  33. Mingos DMP, Watson MJ (1991) TMC literature highlights – 27. Recent developments in the homo- and hetero-metallic cluster compounds of gold. Trans Met Chem 16:285–287

    CAS  Google Scholar 

  34. Mingos DMP (1984) Structure and bonding in cluster compounds of gold. Polyhedron 3:1289–1297

    CAS  Google Scholar 

  35. Hall KP, Mingos DMP (1984) Homo- and heteronuclear cluster compounds of gold. Prog Inorg Chem 32:237–325

    CAS  Google Scholar 

  36. Mingos DMP (1984) Gold cluster compounds. Are they metals in miniature? Gold Bull (Geneva) 17:5–12

    CAS  Google Scholar 

  37. Mingos DMP (1982) Some theoretical and structural aspects of gold cluster chemistry. Phil Trans Roy Soc (Lond) 308:75–83

    CAS  Google Scholar 

  38. Mingos DMP (1980) Theoretical and structural studies on organometallic cluster molecules. Pure Appl Chem 52:705–712

    CAS  Google Scholar 

  39. Steggerda JJ, Bour JJ, van der Velden JWA (1982) Preparation and properties of gold cluster compounds. Rec des Travaux Chimiques des Pays-Bas 101:164–170

    CAS  Google Scholar 

  40. Kanters RPF, Schlebos PPJ, Bour JJ, Wijnhoven J, van den Berg JE, Steggerda JJ (1990) Isonitrile-containing platinum–gold phosphine clusters. J Organomet Chem 388:233–242

    CAS  Google Scholar 

  41. van der Velden JWA, Bour JJ, Steggerda JJ, Beurskens PT, Roseboom M, Noordik JH (1982) Gold clusters preparation, X-ray analysis, gold-197 Mössbauer and 31P{1H} NMR spectroscopy. Inorg Chem 21:4321–4324

    Google Scholar 

  42. Kanters RPF, Steggerda JJ (1990) Recognition of torroidal and spherical geometries in metal clusters of gold. J Cluster Sci 1:229–239

    Google Scholar 

  43. Zeng C, Jin R (2014) Gold nanoclusters: size-controlled synthesis and crystal structures. Struct Bond (Ed Mingos DMP) (in press)

    Google Scholar 

  44. Häkkinen H (2012) Ligand protected gold nanoclusters as superatoms – insights from theory and computations. In: Johnston RL, Wilcoxon JP (eds) Metal nanoparticles and nanoalloys. Frontiers of nanoscience, Palmer RE (series editor), vol 3. Elsevier, Amsterdam, pp 129–154

    Google Scholar 

  45. Pyykkö P, Mendizabal F (1997) Theory of the d10–d10 closed-shell attraction. II. Long-distance behavior and non-additive effects in dimers and trimers of type [(X-Au-L)n] (n = 2, 3; X = Cl, I, H; L = PH3, PMe3, –N ≡ CH). Chem Eur J 3:1458–1465

    Google Scholar 

  46. Dass A (2009) Mass spectrometric identification of Au68(SR)34 molecular gold nanoclusters with 34-electron shell closing. J Am Chem Soc 131:11666–11667

    CAS  Google Scholar 

  47. Dass A, Holt K, Parker JF, Feldberg MRW (2008) Mass spectrometrically detected statistical aspects of ligand populations in mixed monolayer Au25L18 nanoparticles. J Phys Chem C 112:20276–20283

    CAS  Google Scholar 

  48. Malatesta L (1975) Cluster compounds of gold. Gold Bull 8:48–52

    CAS  Google Scholar 

  49. Naldini L, Cariaati F, Simonetta G, Malatesta L (1965) Gold tertiary phosphine derivatives with intermetallic bonds. J Chem Soc Chem Commun 212–213

    Google Scholar 

  50. Malatesta L, Naldini L, Simonetta G, Cariati F (1966) Triphenylposphine gold(0)-gold(I) compounds. Coord Chem Rev 1:255–262

    CAS  Google Scholar 

  51. McPartlin M, Mason R, Malatesta L (1969) Custer compounds of gold(0)–gold(I). J Chem Soc Chem Commun 334

    Google Scholar 

  52. Schmid G, Pfeil R, Boese R, Bandermann F, Meyer S, Galis GHM, van der Velden JWA (1981) Au55(PPh3)12Cl6 – a gold cluster of unusual size. Chem Ber 114:3634–42

    CAS  Google Scholar 

  53. Wallenberg LR, Bovin JO, Schmid G (1985) Au55(PPh3)12Cl6 – TEM study of a gold cluster of unusual size. Surf Sci 156:256–264

    CAS  Google Scholar 

  54. Schmid G (1985) Developments in transition metal cluster chemistry: the way to large clusters. Struct Bond 62:52–85

    Google Scholar 

  55. Häkkinen H (2012) Ligand protected gold nanoclusters as superatoms – insights from theory and computations. In: Johnston RL, Wilcoxon JP (eds) Metal nanoparticles and nanoalloys. Frontiers of nanoscience, Palmer RE (series editor), vol 3. Elsevier, Amsterdam, pp 121–122

    Google Scholar 

  56. Rapoport DH, Vogel W, Coelfen H, Schlogegel R (1997) Ligand stabilised clusters: reinvestigation of the structure of Au55(PPh3)12Cl6. J Phys Chem 101:4175–4183

    CAS  Google Scholar 

  57. Brown LO, Hutchinson JE (1997) Convenient preparation of stable narrow-dispersity gold nanocrystals by ligand exchange reactions. J Am Chem Soc 119:12384

    CAS  Google Scholar 

  58. Broda J, Schmid G, Simon U (2013) Size and ligand specific response of gold clusters and nanoparticles: challenges and perspectives. Struct Bond (Ed Mingos DMP)

    Google Scholar 

  59. Teo BK, Shi X, Zhang H (1992) Pure gold cluster of 1:9:9:1:9:1:9:1 layered structure: a novel 39 metal atom cluster [Au39Cl6(PPh3)14]Cl2 with an interstitial gold in a hexagonal antiprismatic cage. J Am Chem Soc 114:2743–2745

    CAS  Google Scholar 

  60. Teo BK, Zhang H (1995) Polyicosahedracity: icosahedraon to icosahedrons of icosahedral growth pathway to bimetallic and trimetallic Au, Ag, M (M = Ni, Pd, Pt) supraclusters – synthetic strategies and stereochemical principles. Coord Chem Rev 143:611–636

    CAS  Google Scholar 

  61. Walter M, Akola J, Lopez-Acevedo O, Jadinsky PD, Calero G, Ackerson CJ, Whetten RL, Gronbeck H, Häkkinen H (2008) A unified view of ligand protected gold clusters as a super atom complexes. Proc Natl Acad Sci U S A 105:9157–9162

    CAS  Google Scholar 

  62. Häkkinen H, Barnett RN, Landman U (1999) Electronic structure of passivated [Au38(SCH3)24] nanocrystal. Phys Rev Lett 82:3264

    Google Scholar 

  63. Jadzinsky PD, Calero G, Ackerson CJ, Bushnell DA, Kornberg RD (2007) Structure of a thiol monolayer protected gold nanoparticle at 1.1A resolution. Science 318:430–433

    CAS  Google Scholar 

  64. Price R, Whetten RL (2007) Nano-golden order. Science 318:407–408

    Google Scholar 

  65. Häkkinen H (2008) Atomic and electronic structure of gold clusters: understanding flakes, cages and superatoms from simple concepts. Chem Soc Rev 37–59:1847–1859

    Google Scholar 

  66. Murray RW (2008) Nanoelectrochemistry: metal nanoparticles, nanoelectrodes, and nanopores. Chem Rev 108:2688–2720

    CAS  Google Scholar 

  67. Turkevich J, Stevenson PC, Hillier J (1951) A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss Faraday Soc 11:55–75

    Google Scholar 

  68. Kimling J, Maier M, Okenve B, Kotaidis V, Ballot H, Plech A (2006) Turkevich method for gold nanoparticle synthesis revisited. J Phys Chem B 110:15700–15707

    CAS  Google Scholar 

  69. Frens G (1972) Particle size and sol stability in metal colloids. Colloid Polym Sci 250:736–741

    CAS  Google Scholar 

  70. Frens G (1973) Controlled nucleation for the regulation of the particle size in mono-disperse gold suspensions. Nature (London) Phys Sci 241:20–22

    CAS  Google Scholar 

  71. Pong BK et al (2007) New insights on the nanoparticle growth mechanism in the citrate reduction of gold(III) salt: formation of the Au nanowire intermediate and its nonlinear optical properties. J Phys Chem C 111:6281–6287

    CAS  Google Scholar 

  72. Perrault SD, Chan WCW (2009) Synthesis and surface modification of highly monodispersed, spherical gold nanoparticles of 50–200 nm. J Am Chem Soc 131:17042–17043

    CAS  Google Scholar 

  73. Brust M, Walker M, Bethell D, Schiffrin DJ, Whyman R (1994) Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid–liquid system. J Chem Soc Chem Commun 801–802

    Google Scholar 

  74. Kiely CJ, Fink J, Brust M, Walker M, Bethell D, Schiffrin DJ (1998) Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid–liquid system. Nature 396:444–446

    CAS  Google Scholar 

  75. Brust M, Kiely CJ (2002) Some recent advances in nanostructure preparation from gold and silver particles: a short topical review. Colloids Surf A 202:175–186

    CAS  Google Scholar 

  76. Giersig P, Mulvaney P (1993) Preparation of ordered colloid monolayers by electrophoretic deposition. Langmuir 9:3408–3413

    CAS  Google Scholar 

  77. Daniel M-C, Astruc D (2004) Gold nanoparticles assembly, supramolecular chemistry, quantum size related properties, applications towards biology, catalysis and nanotechnology. Chem Rev 104:293–346

    CAS  Google Scholar 

  78. Manna A, Chen P, Akiyama H, Wei T, Tamada K, Knoll W (2003) Optimised photoisomerization on gold nanoparticles capped by unsymmetrical azobenzene disulfides. Chem Mater 15:20–28

    CAS  Google Scholar 

  79. Zhu M, Lanni E, Garg N, Bier ME, Jin R (2008) Kinetically controlled, high-yield synthesis of Au25 clusters. J Am Chem Soc 130:1138–1139

    CAS  Google Scholar 

  80. Brust M, Fink J, Bethell D, Schiffrin DJ, Kiely C (1995) Synthesis and reactions of functionalised gold nanoparticles. J Chem Soc Chem Commun 1655–1656

    Google Scholar 

  81. Wu Z, Suhan J, Jin RC (2009) One-Pot synthesis of atomically monodisperse, thiol-functionalized Au25 nanoclusters. J Mater Chem 19:622–626

    CAS  Google Scholar 

  82. Templeton AC, Hostetler MJ, Kraft CT, Murray RW (1998) Reactivity of monolayer-protected gold cluster molecules steric effects. J Am Chem Soc 120:1906–1911

    CAS  Google Scholar 

  83. Hostetler MJ, Templeton AC, Murray RW (1999) Dynamics of place-exchange reactions on monolayer-protected gold cluster molecules. Langmuir 15:3782–3789

    CAS  Google Scholar 

  84. Lin XM, Jaeger HM, Sorensen CM, Klabunde KJ (2001) Formation of long-range-ordered nanocrystal superlattices on silicon nitride substrates. Phys Chem B 105:3353–3357

    CAS  Google Scholar 

  85. Kamei Y, Shichuba Y, Konishi K (2011) Generation of small clusters with unique geometries through cluster-cluster transformations; octanuclear clusters with edge-sharing gold tetrahedron motifs. Angew Chem Int Ed 50:7442–7445

    CAS  Google Scholar 

  86. Guo WW, Yuan JP, Wang EK (2012) Organo-soluble fluorescent Au8 clusters generated from heterophase ligand-exchange etching of gold nanoparticles and their electroluminesence. J Chem Soc Chem Commun 48:3076–3078

    CAS  Google Scholar 

  87. Schaaff TG, Whetten RL (1999) Controlled etching of Au:SR cluster compounds. J Phys Chem B 103:9394–9396

    CAS  Google Scholar 

  88. Qian H, Eckenhoff WT, Zhu Y, Pintauer T, Jin R (2010) Total structure determination of thiolate-protected Au38 nanoparticles. J Am Chem Soc 132:8280–8281

    CAS  Google Scholar 

  89. Jin R, Qian HF, Wu Z, Zhu Y, Zhu M, Mohanty A, Gay N (2010) Size focusing: a methodology for synthesising atomically precise gold clusters. Nanotechnology 21:2903–2910

    Google Scholar 

  90. Pradeep T, Shibu ES (2011) Quantum clusters in cavities: trapped Au15 in cyclodextrins. Chem Mater 23:989–999

    Google Scholar 

  91. Nimmala PR, Dass A (2011) Au36(SPh)23 nanomolecules. J Am Chem Soc 133:9175–9177

    CAS  Google Scholar 

  92. Qian H, Zhu Y, Jin R (2009) Size-focusing synthesis, optical and electrochemical properties of monodispersed Au38(SC2H4Ph)24. Nanoclusters 3:3795–3803

    CAS  Google Scholar 

  93. Qian H, Jin R (2009) Controlling nanoparticles with atomic precision: the case of Au104(SCH2CH2Ph)60. Nano Lett 9:4083–4087

    CAS  Google Scholar 

  94. Xu Q, Wang SX, Liu Z, Xu GY, Meng SM, Zhu MZ (2013) Synthesis of selenato- protected Au18(SePh)14 nano-clusters. Nanoscale 5:1176–1182

    CAS  Google Scholar 

  95. Tsunoyama H, Negishi Y, Tsukuda T (2006) Chromatographic isolation of “missing” Au55 clusters protected by alkanethiolates. J Am Chem Soc 128:6036–6037

    CAS  Google Scholar 

  96. Negishi Y, Nobusada K, Tsukuda T (2005) Glutathione-protected gold clusters revisited: bridging the gap between gold(I)-thiolate complexes and thiolate-protected gold nanocrystals. J Am Chem Soc:5261–5270

    Google Scholar 

  97. Seo D, Park JC, Song H (2006) Polyhedral gold nanocrystals with Oh symmetry: from octahedra to cubes. J Am Chem Soc 128:14863–14870

    CAS  Google Scholar 

  98. Schaaff TG, Knight G, Shafigullin MN, Borkman RF, Whetten RL (1998) Isolation and selected properties of 10.4 kDa gold: glutathione cluster compound. J Phys Chem B 102:10643–10646

    CAS  Google Scholar 

  99. Schaaff TG, Whetten RL (1999) Controlled etching of Au:SR cluster compounds. J Phys Chem 103:9394–9396

    CAS  Google Scholar 

  100. Whetten RL, Shafigullin MN, Khoury JT, Schaaff TG, Alvarez MM, Wilkinson A (1999) Crystal structures of molecular gold nanocrystal arrays. Acc Chem Res 32:397–406

    CAS  Google Scholar 

  101. Ingram RS, Hostetler MJ, Murray RW, Schaaff TG, Khoury J, Whetten RL, Bigioni TP, Guthrie DK, First PN (1997) 28 kDa alkanethiolate-protected Au clusters give analogous solution electrochemistry and STM Coulomb staircases. J Am Chem Soc 119:9279–9280

    CAS  Google Scholar 

  102. Shichubu Y, Negishi Y, Tsukada T, Teranishi T (2005) Large-scale synthesis of thiolated Au25 clusters via ligand exchange reactions of phosphine-stabilised Au11 clusters. J Am Chem Soc 127:13464–13465

    Google Scholar 

  103. Tsunoyama H, Sakurai H, Negishi Y, Tsukuda T (2005) Size-specific catalytic activity of polymer-stabilised gold nanoclusters for aerobic alcohol oxidation in water. J Am Chem Soc 127:9374–9375

    CAS  Google Scholar 

  104. Tsunoyama H, Sakurai H, Negishi Y, Tsukuda T (2007) Size-specific catalytic activity of polymer-stabilised gold nanoclusters for aerobic alcohol oxidation in water. J Am Chem Soc 129:11322

    Google Scholar 

  105. Dass A, Stevenson A, Dubay GB, Tracy JB, Murray RW (2008) MALDI-TOF nanoparticle mass spectrometry without fragmentation: Au25(SCH2CH2Ph)18 and mixed monolayer Au25(SCH2CH2Ph)18-x(L)x. J Am Chem Soc 130:5940–5946

    CAS  Google Scholar 

  106. Zhu M, Aikens CM, Hollander FJ, Schatz GC, Jin R (2008) Correlating the crystal structure of a thiol-protected Au25 cluster and optical properties. J Am Chem Soc 130:5883–5885

    CAS  Google Scholar 

  107. Qian HF, Jin R (2011) Ambient synthesis of Au104(SR)60 nanoclusters in methanol. Chem Mater 23:2209–2217

    CAS  Google Scholar 

  108. Alloisio M, Demartini A, Cuniberti C, Muniz-Miranda M, Giorgetti E, Giusti A (2008) Photopolymerization of diacetylene-capped gold nanoparticles. Phys Chem Chem Phys 10:2214–2220

    CAS  Google Scholar 

  109. Pelka JB, Brust M, Gierlowski P, Paszkowsicz W, Schell N (2006) Structure and conductivity of self-assembled films of gold nanoparticles. Appl Phys Lett 89:063110–063113

    Google Scholar 

  110. Corbierre MK, Bearens J, Beauvais J, Lennox RB (2006) Uniform one-dimensional arrays of tunable gold nanoparticles with tunable interparticle distances. Chem Mater 18:2628–2631

    CAS  Google Scholar 

  111. Vollenbroek FA, Bouten DCP, Trooster JP, van der Berg JP, Bour JJ (1978) Mössbauer investigation and novel synthesis of gold cluster compounds. Inorg Chem 17:1345–1347

    CAS  Google Scholar 

  112. van der Velden JWA, Bour JJ, Vollenbroek FA, Beurskens PT, Smits JMM (1979) Synthesis of a new pentanuclear gold cluster by metal evaporation. Preparation and X-ray structure determination of [tris{bis(diphenylphosphino)methane}][bis(diphenylphosphino)methanido]pentagold dinitrate. J Chem Soc Chem Commun 1162–1163

    Google Scholar 

  113. van der Velden JWA, Bour JJ, Beurskens PT, Dosman WP, Noordik JM, Kolenbrander M, Buskes JAKM (1984) Intermediates in the formation of gold clusters. Preparation and X-ray analysis of [Au7(PPh3)7]+ and synthesis and characterization of [Au8(PPh3)6I]PF6. Inorg Chem 23:146–151

    Google Scholar 

  114. Lin ST, Franklin MT, Klabunde KJ (1986) Nonaqueous colloidal gold. Clustering of metal atoms in organic media – 12. Langmuir 2:259–260

    CAS  Google Scholar 

  115. Cardines-Trevino G, Klabunde KJ, Dale EB (1987) Living colloidal palladium in nonaqueous solvents. Formation, stability, and film-forming properties. Clustering of metal atoms in organic media – 14. Langmuir 3:986–992

    Google Scholar 

  116. Belloni J, Delecourt MO, Leclerc C (1982) Radiation-induced preparation of metal catalysts: iridium aggregates. New J Chem 6:507–518

    CAS  Google Scholar 

  117. Gachard E, Remita H, Khatouri J, Keita B, Nadjo L, Belloni J (1998) Radiation-induced and chemical formation of gold clusters. New J Chem 22:1257–1265

    CAS  Google Scholar 

  118. Treuger M, de Cointet C, Remita H, Khatouri J, Mostafavi M, Amblard J, Belloni J, de Keyzer R (1998) Dose effects on radiolytic synthesis of gold-silver bimetallic clusters in solution. J Phys Chem B 102:1310–1321

    Google Scholar 

  119. Zhang J, Du J, Man B, Liu Z, Jiang T, Zhang Z (2006) Sonochemical formation of single crystalline gold nanoclusters. Angew Chem Int Ed 118:1134–1137

    Google Scholar 

  120. Uppal J, Kafizas A, Ewing MB, Parkin IP (2010) The effect of initiation method on the size, monodispersity and shapes of gold nanoparticles formed by the Turkevich method. New J Chem 24:2006–2014

    Google Scholar 

  121. Mafuné F, Kohno J, Takeda Y, Kondow T, Sawabe H (2001) Formation of gold nanoparticles by laser ablation in aqueous solution of surfactant. J Phys Chem B 105:5114–5120; 9050–9056

    Google Scholar 

  122. Leff DV, Brandt L, Heath JR (1996) Synthesis and characterization of hydrophobic, organically-soluble gold nanocrystals functionalized with primary amines. Langmuir 12:4723–4730

    CAS  Google Scholar 

  123. Shi W, Sahoo Y, Swihart MT (2004) Gold nanoparticles surface-terminated with bifunctional ligands. Colloids Surf A Physicochem Eng Asp 246:109–113

    CAS  Google Scholar 

  124. Li Z (2012) Scanning transmission electron microscopy studies of mono- and bi-metallic nanoclusters. In: Johnston RL, Wilcoxon JP (eds) Metal nanoparticles and alloys. Elsevier, Amsterdam, pp 213–245

    Google Scholar 

  125. Chen Y, Palmer RE, Wilcoxon JP (2006) Sintering of passivated gold nanoparticles under the electron beam. Langmuir 22:2851–2855

    CAS  Google Scholar 

  126. Wilcoxon JP, Provencio PP (2004) Heterogeneous growth of metal clusters from solutions of seed nanoparticles. J Am Chem Soc 126:6402–6408

    CAS  Google Scholar 

  127. Martin JE, Odinek J, Wilcoxon JP, Anderson RA, Provencio PP (2003) Sintering of alkanethiol-capped gold and platinum nanoclusters. J Phys Chem B 107:430

    CAS  Google Scholar 

  128. Horisberger M (1981) Colloidal gold: a cytochemical marker marker for light and fluorescent microscopy and for scanning electron microscopy. Scan Electron Microsc 2:9–31

    Google Scholar 

  129. Wang ZL (2000) Transmission electron microscopy of shape controlled nano-crystals and their assemblies. J Phys Chem B 104:1153–1175

    CAS  Google Scholar 

  130. Li ZY, Young NP, Di Vecc M, Palomba S, Palmer RE, Bleloch AL, Curley BC, Johnston RL, Jiang J, Yuan J (2008) Three dimensional atomic – scale structure of size selected gold nanoclusters. Nature 451:46–48; Li ZY 213–247 in Ref. [13]

    Google Scholar 

  131. Jiang D (2013) The expanding universe of thiolated gold nanoclusters and beyond. Nanoscale 5:7149–7160

    CAS  Google Scholar 

  132. Heaven MW, Dass A, White PS, Holt KM, Murray RW (2008) Crystal structure of the gold nanoparticle [N(C8H17)4][Au25(SCH2CH2Ph)18]. J Am Chem Soc 130:3754–3755

    CAS  Google Scholar 

  133. Qian H, Zhu M, Lanni E, Zhu Y, Bier ME, Jin R (2009) Conversion of polydisperse Au nanoparticles into monodisperse Au25 nanorods and nanospheres. J Phys Chem C 113:17599–17603

    CAS  Google Scholar 

  134. Qian H, Zhu Y, Jin R (2009) Size-focusing synthesis, optical and electrochemical properties of monodisperse Au38(SC2H4Ph)24 nanoclusters. ACS Nano 3:3795–3803

    CAS  Google Scholar 

  135. Zeng C, Qian H, Li T, Li G, Rosi NL, Yoon B, Barnett RN, Whetten RL, Landman U, Jin R (2012) Total structure and electronic properties of the gold nanocrystal Au36(SR)24. Angew Chem Int Ed 51:13114–13118

    CAS  Google Scholar 

  136. Zeng C, Li T, Das A, Rosi NL, Jin R (2013) Chiral structure of thiolate-protected 28-gold-atom nanocluster determined by X-ray crystallography. J Am Chem Soc 135:10011–10013

    CAS  Google Scholar 

  137. Mingos DMP (1982) Steric effects in metal cluster chemistry. Inorg Chem 21:466–468

    Google Scholar 

  138. Vollenbroek FA (1979) Ph D Thesis University of Nijmegen

    Google Scholar 

  139. Krommenhoek PJ, Wang J, Hentz N, Johnston-Peck AC, Kozek KA, Kalyuzhny G, Tracy JB, Bulky A (2012) Cyclohexanethiolate ligands favor smaller gold nanoparticles with altered discrete sizes. ACS Nano 6:4903–4911

    CAS  Google Scholar 

  140. Harkness KM, Cliffel DE, McLean JA (2010) Characterization of thiolate-protected gold nanoparticles by mass spectrometry. Analyst 135:868–874

    CAS  Google Scholar 

  141. Harkness KM, Fenn LS, Cliffel DE, McLean JA (2010) Surface fragmentation of complexes from thiolate protected gold particles by mass spectrometry. Anal Chem 82:3061–3066

    CAS  Google Scholar 

  142. Whetten RL, Khoury JT, Alvarez MM, Marcos M, Murthy SM, Vezmar I, Wang ZL, Stephens PW, Cleveland CL, Luedtke WD, Landman U (1996) Nanocrystal gold molecules. Adv Mater 8:428–433

    CAS  Google Scholar 

  143. Tracy JB, Kalyuzhny G, Crowe MC, Balasubramanian R, Choi JP, Murray RW (2007) Poly(ethylene glycol) ligands for high-resolution nanoparticle mass spectrometry. J Am Chem Soc 129:6706–6707

    CAS  Google Scholar 

  144. Chaki NK, Negishi Y, Tsunoyama H, Shichibu Y, Tsukuda T (2008) Ubiquitous 8 and 29 kDa gold:alkanethiolate cluster compounds: mass-spectrometric determination of molecular formulas and structural implications. J Am Chem Soc 130:8608–8610

    CAS  Google Scholar 

  145. Arnold RJ, Reilly JP (1998) High-resolution time-of-flight mass spectra of alkanethiolate-coated gold nanocrystals. J Am Chem Soc 120:1528–1532

    CAS  Google Scholar 

  146. Dass A, Dubay George R, Fields-Zinna CA, Murray RW (2008) FAB mass spectrometry of Au25(SR)18 nanoparticles. Anal Chem (Washington, DC) 80:6845–6849

    CAS  Google Scholar 

  147. Dass A, Guo R, Tracy JB, Balasubramanian R, Douglas AD, Murray RW (2008) Gold nanoparticles with perfluorothiolate ligands. Langmuir 24:310–315

    CAS  Google Scholar 

  148. Tracy JB, Crowe MC, Parker JF, Hampe O, Fields-Zinna CA, Dass A, Murray RW (2007) Electrospray ionization mass spectrometry of uniform and mixed monolayer nanoparticles: Au25[S(CH2)2Ph]18 and Au25[S(CH2)2Ph]18-x(SR)x. J Am Chem Soc 129:16209–16215

    CAS  Google Scholar 

  149. Qian H, Zhu M, Wu Z, Jin R (2012) Quantum sized gold nanoclusters with atomic precision. Acc Chem Res 45:1470–1479

    CAS  Google Scholar 

  150. Wu Z, Gayathri C, Gil RR, Jin R (2009) Probing the structure and charge state of glutathione-capped Au25(SG)18 clusters by NMR and mass spectrometry. J Am Chem Soc 131:6535–6542

    CAS  Google Scholar 

  151. Shvartsburg A, Jarrold M (2000) Modeling Ion mobilities by scattering on electronic density isosurfaces-applied to silicon cluster anions. Chem Phys Lett 317:615–618

    CAS  Google Scholar 

  152. Weis P, Biersieller T, Volmer T, Kappes MM (2002) Au9 + rapid isomerizations at 140 K. J Chem Phys 117:9293–9297

    CAS  Google Scholar 

  153. Gruene P, Rayner DM, Redlich B, van der Meer AFG, Lyon JT, Meijer G, Fielicke A (2008) Structures of neutral Au7 Au19, and Au20 clusters in the gas phase. Science (Washington DC) 321:674–676

    CAS  Google Scholar 

  154. Clayden NJ, Dobson CM, Hall KP, Mingos DMP, Smith DJ (1985) Studies of gold cluster compounds using high-resolution phosphorus-31 solid-state nuclear magnetic resonance spectroscopy. Inorg Chem 25:1811–1814

    Google Scholar 

  155. Diesveld JW, Menger EM, Edzes HT, Veeman WS (1980) J Am Chem Soc 102:7935

    CAS  Google Scholar 

  156. van der Velden JWA, Bour JJ, Bosman WP, Noordik JH, Beurskens PT (1984) Electrochemical preparation of [Au9(PPh3)8]+. A comparative study of structures. Receuil (J R Neth Chem Soc) 103:13–16

    Google Scholar 

  157. van der Velden JWA, Bour JJ, Steggerda JJ, Beurskens PT, Roseboom M, Noordik JH (1983) Gold clusters. Tetrakis[1,3-bis(diphenylphosphino)propane]hexagold dinitrate: preparation, X-ray analysis, and gold-197 Mössbauer and phosphorus-31{proton} NMR spectra. Inorg Chem 21:4321–4324

    Google Scholar 

  158. Sharma R, Holland GP, Solomon VC, Zimmermann H, Schiffenhaus S, Amin SA, Buttry DA, Yarger JL (2009) NMR characterization of ligand binding and exchange dynamics in triphenylphosphine-capped gold nanoparticles. J Phys Chem C 113:16387–16393

    CAS  Google Scholar 

  159. Salorinne K, Lahtinen T, Koivisto J, Kalenius E, Nissinen M, Pettersson M, Häkkinen H (2013) Non-destructive size determination of thiol-stabilised gold nanoclusters in solution by diffusion ordered NMR spectroscopy. Anal Chem 85:3489–3492

    CAS  Google Scholar 

  160. Qian H, Zhu M, Gayathri C, Gil RR, Jin R (2011) Chirality in gold nanoclusters probed by NMR spectroscopy. ACS Nano 5:8935–8942

    CAS  Google Scholar 

  161. Parish RV, Moore LS, Dens AJ, Mingos DMP, Sherman DJ (1988) Iron-57 and gold-197 Mössbauer spectro-scopic investigation of the bonding in two gold-iron cluster compounds. Inorg Chem 27:781–783

    Google Scholar 

  162. Parish RV, Moore LS, Dens AJ, Mingos DMP, Sherman DJ (1989) Gold-197 Mössbauer spectra and the bonding of some gold–gold and gold–platinum clusters. J Chem Soc Dalton Trans Inorg Chem 539–543

    Google Scholar 

  163. Battistoni C, Mattogno G, Mingos DMP (1984) Characterization of some gold cluster compounds by X-ray photoelectron spectroscopy. Inorg Chim Acta 33:107–113

    CAS  Google Scholar 

  164. Arfelli M, Battistoni C, Mattogno G, Mingos DMP (1989) X-ray photoelectron spectroscopic evidence for the electrophilic character of the AuL [gold-ligand] fragment in the cluster compound (Pt3Au(μ2-CO)3 L4)PF6. J Elect Spectr Rel Phenomena 49:273–277

    CAS  Google Scholar 

  165. Chevrier DM, Chatt A, Sham TK, Zhang P (2013) A comparative EXAFS study of gold-thiolate nanoparticles and nanoclusters. J Phys Conf Ser 430:120–129

    Google Scholar 

  166. Yao T, Sun Z, Li Y, Pan Z, Wei H, Xie Y, Nomura M, Niwa Y, Yan W, Wu Z, Jiang Y, Liu Q, Wei S (2010) Insights into initial kinetic nucleation of gold nanocrystals. J Am Chem Soc 132:7696–7701

    CAS  Google Scholar 

  167. Abecassis B, Testard F, Spalla O, Barboux P (2007) Probing in situ the nucleation and growth of gold nanoparticles by small-angle X-ray scattering. Nano Lett 7:1723–1727

    CAS  Google Scholar 

  168. Coffer JL, Shapley JR, Drickamer HG (1990) Pressure-induced skeletal isomerization of octakis-(triphenylphosphine)nonagold(3+) hexafluorophosphate in the solid state. Inorg Chem 29:3000–3001

    Google Scholar 

  169. Coffer JL, Shapley JR, Drickamer HG (1990) The effect of pressure on the surface plasmon absorption spectrum of colloidal gold and silver particles. J Am Chem Soc 112:3736–3742

    CAS  Google Scholar 

  170. Saha K, Agasti SS, Kim C, Li X (2012) Gold sensors in chemical and biological systems. Chem Rev 112:2739–2779

    CAS  Google Scholar 

  171. Zhang Y, Fei W-W, Jia N-Q (2005) A facile method for the detection of DNA using gold nanoparticle probes coupled with dynamic light scattering. Nanoscale Lett 7:564–569

    Google Scholar 

  172. Chah S, Hammond MR, Zare PN (2005) Gold nanoparticles as a colorometric sensor for protein conformational changes. Chem Biol 12:323–328

    CAS  Google Scholar 

  173. Durgadas CV, Sharma CP, Sreenivasan K (2011) Fluorescent gold clusters as nanosensors for copper ions in live cells. Analyst 136:933–940

    CAS  Google Scholar 

  174. Ali ME, Hashim U, Mustafa S, Che-Man YB, Islam KH (2012) Development of swine-specific DNA markers for biosensor-based halal authentication. Genet Mol Res 11:1762–1772

    CAS  Google Scholar 

  175. Eustis S, El-Sayed M (2006) Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and non-radiative properties of nanocrystals of different shapes. Chem Soc Rev 35:209–217

    CAS  Google Scholar 

  176. Kneipp J, Kneipp H, McLaughlin M, Brown D, Kneipp K (2006) In vivo molecular probing of cellular compartments with gold nanoparticles and nanoaggregates. Nano Lett 6:2225–2231

    CAS  Google Scholar 

  177. Johnston RL (2012) In: Johnston RL, Wilcoxon JP (eds) Metal nanoparticles and alloys. Elsevier, Amsterdam, pp 1–42

    Google Scholar 

  178. Kim Y, Johnson RC, Hupp JT (2001) Gold nanoparticle-based sensing of “spectroscopically silent” heavy metal ions. Nano Lett 1:165–167

    Google Scholar 

  179. Horisberger M, Rosset JJ (1977) Colloidal gold, a useful marker for transmission and scanning electron microscopy. J Histochem Cytochem 25:295–305

    CAS  Google Scholar 

  180. Peng G, Tisch U, Adams O, Hakim M, Shehada N, Broza YY, Bilan S, Abdah-Bortnyak R, Kuten A, Haick H (2009) Diagnosing lung cancer in exhaled breath using gold nanoparticles. Nat Nanotechnol 4:669–673

    CAS  Google Scholar 

  181. Brown SD, Nativo P, Smith J-A, Stirling D, Edwards PR, Venugopal B, Flint DJ, Plumb JA, Graham D, Wheate NJ (2010) Gold nanoparticles for the improved anticancer drug delivery of the active component of oxaliplatinum. J Am Chem Soc 132:4678–4684

    CAS  Google Scholar 

  182. Huang X, Jain PK, El-Sayed IH, El-Sayed MA (2008) Plasmonic photothermal therapy (PPTT) using gold particles. Lasers Med Sci 23:217–228

    Google Scholar 

  183. Stuchinskaya T, Moreno M, Cook MJ, Edwards DR, Russell DA (2011) Targeted photodynamic therapy of breast cancer cells using antibody-phthalocyanine-gold nanoparticle conjugates. Photochem Photobiol Sci 10:822–831

    CAS  Google Scholar 

  184. Hone DC, Walker PI, Evans-Gowing R, Fitzgerald S, Beeby A, Chambrier I, Cook MJ, Russell DA (2002) Generation of cytotoxic singlet oxygen via phthalocyanin, stabilised gold-nanoparticles: a potential delivery vehicle for photodynamic therapy. Langmuir 18:2985–2987

    CAS  Google Scholar 

  185. Huang D, Liao F, Molesa S, Redinger D, Subramanian V (2003) Plastic-compatible Low resistance printable gold nanoparticle conductors for flexible electronics. J Electrochem Soc 150:G412–G417

    CAS  Google Scholar 

  186. Okazaki S, Moers J (2005) Lithography. In: Waser R (ed) Nanoelectronics and information technology, 2nd edn. Wiley-VCH, Weinheim, pp 221–247

    Google Scholar 

  187. Grabert H (1991) Single charge tunneling: a brief introduction. Z Phys B 85:319–325

    Google Scholar 

  188. Homberger M, Simon U (2010) On the application potential of gold nanoparticles in nanoelectronics and biomedicine. Phil Trans R Soc A 368:1405–1453

    CAS  Google Scholar 

  189. Mirkin CA (2000) Programming the assembly of two- and three-dimensional architectures with DNA and nanoscale inorganic building blocks. Inorg Chem 39:2258–2272

    CAS  Google Scholar 

  190. Mirkin CA, Letsinger RL, Mucic RC, Storhoff JJ (1996) A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382:607–609

    CAS  Google Scholar 

  191. Macfarlane RJ, O’Brien MN, Petrosko SH, Mirkin CA (2013) Nucleic acid-modified nanostructures as programmable atom equivalents: forging a New “table of elements”. Angew Chem Int Ed 52:5688–5698

    CAS  Google Scholar 

  192. Huang X, Neretina S, El-Sayed MA (2009) Gold nanorods: from synthesis and properties to biological and biomedical applications. Adv Mater 21:4880–4910

    CAS  Google Scholar 

  193. Lohse SE, Murphy CJ (2013) The quest for shape control: a history of gold nanorod synthesis. Chem Mater 25:1250–1261

    CAS  Google Scholar 

  194. Hou S, Hu X, Wen T, Wenqi L, Wu X (2013) Core-shell noble metal nanostructures templated by gold nanorods. Adv Mater 25:3857–3862

    CAS  Google Scholar 

  195. Alkilany AM, Thompson LB, Buolos SP, Sisco PN, Murphy CJ (2012) Gold nanorods: their potential for photothermal therapeutics and drug delivery, tempered by the complexity of their biological interactions. Adv Drug Deliv Rev 64:190–199

    CAS  Google Scholar 

  196. Murphy CJ, Gole AM, Stone JW, Sisco PN, Alkilany AM, Goldsmith EC, Baxter SC (2008) Gold nanoparticles in biology: beyond toxicity to cellular imaging. Acc Chem Res 41:1721–1730

    CAS  Google Scholar 

  197. Murphy CJ, Gole AM, Hunyadi SE, Orendorff CJ (2008) One-dimensional colloidal gold and silver nanostructures. Inorg Chem 45:7544–7554

    Google Scholar 

  198. Jain PK, Rivest JB (2005) Cation exchange on the nanoscale: an emerging technique for new material synthesis, device fabrication, and chemical sensing. Chem Soc Rev 42:89–96

    Google Scholar 

  199. Huang X, Jain PK, El-Sayed IH, El-Sayed MA (2007) Gold nanoparticles: interesting optical properties and recent applications in cancer diagnostics and therapy. Nanomedicine 2:681–693

    CAS  Google Scholar 

  200. Bond GC, Sermon PA (1973) Gold catalysts in olefin hydrogenation. Transmutation of catalytic properties. Gold Bull (Geneva) 6:102–105

    CAS  Google Scholar 

  201. Haruta M, Kobayashi T, Sano H, Yamada N (1987) Novel gold catalysts for the oxidation of carbon monoxide at a temperature far below 0°C. Chem Lett 16:405–406

    Google Scholar 

  202. Haruta M, Yamada N, Kobayashi T, Ijima S (1989) Gold catalysts prepared by co-precipitation for low-temperature oxidation of hydrogen and of carbon monoxide. J Catal 115:301–309

    CAS  Google Scholar 

  203. Haruta M (1997) Size- and support-dependency in the catalysis of gold. Catal Today 36:153–166

    CAS  Google Scholar 

  204. Hutchings GJ (1985) Vapor phase hydrochlorination of acetylene: correlation of catalytic activity of supported metal chloride catalysts. J Catal 96:292–295

    CAS  Google Scholar 

  205. Christensen CH, Jorgensen B, Rass-Hansen J, Egeblad K, Madsen R, Klitgaard SK, Hansen SM, Hansen MR, Andersen HC, Riisager A (2006) Formation of acetic acid by aqueous-phase oxidation of ethanol with air in the presence of a heterogeneous gold catalyst. Angew Chem Int Ed 45:4648–4651

    CAS  Google Scholar 

  206. Valden M, Lai X, Goodman DW (1998) Onset of catalytic activity of gold clusters on titania with the appearance of non-metallic properties. Science (Washington DC) 281:1647–1650

    CAS  Google Scholar 

  207. Boyen HG, Kaestle G, Weigl F, Koslowski B, Dietrich C, Ziemann P (2002) Oxidation-resistant gold-55 clusters. Science (Washington DC) 297:1533–1536

    CAS  Google Scholar 

  208. Lopez N, Novorsky JK, Catalytic CO (2002) Oxidation by a gold nanoparticle: a density functional study. J Am Chem Soc 124:11262–11263

    CAS  Google Scholar 

  209. Landon P, Collier PJ, Papworth AJ, Kiely CJ, Hutchings GJ (2002) Direct formation of hydrogen peroxide from H2/O2 using a gold catalyst. J Chem Soc Chem Commun 18:2058–2059

    Google Scholar 

  210. Haruta M (1997) Novel catalysis of gold deposited on metal oxides. Catal Surv Jpn 1:61–73

    CAS  Google Scholar 

  211. Bond GC, Thompson DT (2000) Gold catalysed oxidation of carbon monoxide. Gold Bull 33:41–51

    CAS  Google Scholar 

  212. Sinha AK, Seelan S, Tsuboata S, Haruta M (2004) Vital Roe of moisture in the catalytic activity of supported gold nanoparticles. Angew Chem Int Ed 43:1546–1548

    CAS  Google Scholar 

  213. Hutchings GC, Edwards JK (2012) Application of gold nanoparticles in catalysis. In: Johnston RL, Wilcoxon JP (eds) Metal nanoparticles and alloys. Elsevier, Amsterdam, Holland, pp 249–293

    Google Scholar 

  214. Okazaki K, Ichikawa S, Maeda Y, Haruta M, Kohyama M (2005) Electronic structures of gold supported on TiO2. Appl Catal A Gen 291:37–44; 45–54

    Google Scholar 

  215. Nilius N, Risse T, Shaikhutdinov S, Sterrer M, Freund H-J (2013) Metal catalysts based on gold clusters. Struct (Ed Mingos DMP)

    Google Scholar 

  216. Li Z, Johnston RL (2014) Nanoalloys of gold. Struct Bond (Ed Mingos DMP)

    Google Scholar 

  217. Ferrando R, Jellinek J, Johnston RL (2008) Nanoalloys: from theory to applications of alloy clusters and nanoparticles. Chem Rev 108:845–910

    CAS  Google Scholar 

  218. Hashmi ASK (2004) Homogeneous catalysis by gold. Gold Bull 37:51–65

    CAS  Google Scholar 

  219. Ito Y, Sawamura M, Hayashi T (1986) Catalytic asymmetric aldol reaction: reactions of aldehydes with isocyanates catalysed by a chiral ferrocenyl-phosphine gold(I) complex. J Am Chem Soc 108:6405–6406

    CAS  Google Scholar 

  220. Teles JH, Brode S, Chabanas M (1998) Cationic gold(I) complexes: highly efficient catalysts for the addition of alcohols to alkynes. Angew Chem 110:1475–1478

    Google Scholar 

  221. Teles JH, Brode S, Chabanas M (1998) Cationic gold(I) complexes: highly efficient catalysts for the addition of alcohols to alkynes. Angew Chem Int Ed 37:1415–1418

    CAS  Google Scholar 

  222. Hashmi ASK, Schwarz L, Choi J-H, Frost TM (2000) A new gold catalysed C–C bond formation. Angew Chem 112:2382–2385

    Google Scholar 

  223. Hashmi ASK, Schwarz L, Choi J-H, Frost TM (2000) A new gold catalysed C–C bond formation. Angew Chem Int Ed 39:2285–2288

    CAS  Google Scholar 

  224. Hashmi ASK, Frost TM, Bats JW (2000) Highly selective gold(I) catalysed arene synthesis. J Am Chem Soc 122:11553–11554

    CAS  Google Scholar 

  225. Dyker G (2000) An Eldorado for homogeneous catalysis. Angew Chem 39:4237–4239

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Michael P. Mingos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mingos, D.M.P. (2014). Historical Introduction to Gold Colloids, Clusters and Nanoparticles. In: Mingos, D. (eds) Gold Clusters, Colloids and Nanoparticles I. Structure and Bonding, vol 161. Springer, Cham. https://doi.org/10.1007/430_2013_138

Download citation

Publish with us

Policies and ethics