Skip to main content
Log in

Occurrence and Ways of Development of Manufacture of Domestic Hard Alloy Products

  • Published:
Inorganic Materials: Applied Research Aims and scope

Abstract

This article provides an overview of the stages of occurrence and development of the manufacturing of domestic hard alloys. It describes the contribution of domestic scientists to the development of various brands of hard alloys and establishment of their production. It shows the outstanding role of G.A. Meerson in the development of the hard-metal industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tret’yakov, V.I., Osnovy metallovedeniya i tekhnologii proizvodstva spechennykh tverdykh splavov (Fundamentals of Metal Science and Production Technology of Sintered Solid Alloys), Moscow: Metallurgiya, 1976.

    Google Scholar 

  2. Panov, V.S., Chuvilin, A.M., and Fal’kovskii, V.A., Tekhnologiya i svoistva spechennykh tverdykh splavov i izdelii is nikh (Technology and Properties of Sintered Solid Alloys and Their Products), Moscow: Mosk. Inst. Stali Splavov, 2004.

    Google Scholar 

  3. Mal’kov, L.P. and Khokhlova, A.V., Tverdye splavy (Solid Alloys), Moscow: Redkie Metally, 1935.

    Google Scholar 

  4. Zarubin, N.M. and Mal’kov, L.P., The structure of WC–TaC(NbC)–Co alloys, Vestn. Metalloprom., 1934, no. 7, pp. 59–62.

    Google Scholar 

  5. Rakovskii, V.S., Metallokeramicheskie tverdye splavy i ikh svoistva (Metalloceramic Solid Alloys and Their Properties), Moscow: Oborongiz, 1944.

    Google Scholar 

  6. Rakovskii, V.S., Samsonov, G.V., and Ol’khov, I.I., Osnovy proizvodstva tverdykh splavov (Fundamentals of Production of Hard Alloys), Moscow: Metallurgizdat, 1960.

    Google Scholar 

  7. Tret’yakov, V.I. and Klyachko, L.I., K istorii tverdykh splavov (The History of Solid Alloys), Moscow: Vizavi, 1998.

    Google Scholar 

  8. Samsonov, G.V. and Vitryanyuk, V.K., Sovremennoe sostoyanie i perspektiva razvitiya tverdykh splavov (Current State and Prospective Development of Solid Alloys), Kiev: Naukova Dumka, 1971.

    Google Scholar 

  9. Panov, V.S., G.A. Meerson: the founder of the national production of hard alloys and powder high-speed steel, Izv. Vyssh. Uchebn. Zaved., Tsvetn. Metall., 2001, no. 6, pp. 40–46.

    Google Scholar 

  10. Panov, V.S., Libenson, G.A., and Rakova, N.N., G.A. Meerson cherez prizmu vremeni (G.A. Meerson through the Time), Perm: Minist. Obraz. RF, 2003, pp. 53–66.

    Google Scholar 

  11. Ivensen, V.A. and Loseva, S.S., Submicron solid alloys, Izv. VUZov, Poroshk. Metall. Funkts. Pokrytiya, 1963, no. 3, pp. 37–45.

    CAS  Google Scholar 

  12. Fal’kovskii, V.A., Development of hard alloys for chipless processing of metals, Extended Abstract of Doctoral (Eng.) Dissertation, Moscow: Natl. Univ. Sci. Technol., MISIS, 1997.

    Google Scholar 

  13. Meerson, G.A. and Panov, V.S., Uluchshennye marki tverdykh splavov (Improved Grades of Solid Alloys), Moscow: Gos. Nauchno-Issled. Inst. Nauch. Tekh. Inf., 1969.

    Google Scholar 

  14. Panov, V.S., Meerson, G.A., and Funke, V.F., The structure and physical-mechanical properties of WC–TaC–Co alloys, Izv. Akad. Nauk SSSR, Met., 1966, no. 2, pp. 213–215.

    Google Scholar 

  15. Panov, V.S., The role of tantalum carbide in WC–Co alloys, Izv. Vyssh. Uchebn. Zaved., Tsvetn. Metall., 1969, no. 14, pp. 27–30.

    Google Scholar 

  16. Panov, V.S. and Meerson, G.A., Possible substitution of tantalum carbide with niobium carbide, Izv. Akad. Nauk SSSR, Met., 1972, no. 2, pp. 181–184.

    Google Scholar 

  17. Panov, V.S. and Glushkov, V.N., High-performance production of fine-grained tungsten powder, Izv. Vyssh. Uchebn. Zaved., Tsvetn. Metall., 1971, no. 8, pp. 35–39.

    Google Scholar 

  18. Meerson, G.A., Kiparisov, S.S., Panov, V.S., and Glushkov, V.N., The properties of the T15K6 alloy based on a “direct flow” tungsten powder, Izv. Vyssh. Uchebn. Zaved., Tsvetn. Metall., 1978, no. 3, pp. 37–38.

    Google Scholar 

  19. Kreimer, B.S., New grades of hard alloys, Izv. Akad. Nauk SSSR, Otd. Tekh. Nauk, Metall. Topl., 1960, vol. 4, pp. 18–22.

    Google Scholar 

  20. Meerson, G.A., Kiparisov, S.S., and Panov, V.S., The effect of refractory carbides on the properties of cutting tools, Poroshk. Metall., 1975, no. 10, pp. 27–30.

    Google Scholar 

  21. Kobitskoi, I.V., Emel’yanova, T.A., and Klyachko, L.I., Analysis of specific fine-grained hard alloys doped with refractory metal carbides, Tsvetn. Met., 1998, no. 8, pp. 58–60.

    Google Scholar 

  22. Klyachko, L.I., Multicarbide WC–Co hard alloys, Proc. the 15th Int. Plansee Seminar, Plansee, 2001, vol. 56, no. 11, pp. 24–27.

    Google Scholar 

  23. Fal’kovskii, V.A. and Klyachko, L.I., Tverdye splavy (Solid Alloys), Moscow: Ruda i Metally, 2005.

    Google Scholar 

  24. Tret’yakov, V.I. and Klyachko, L.I., Tverdye splavy, tugoplavkie metally, sverkhtverdye materialy (Hard Alloys, Refractory Metals, and Superhard Materials), Moscow: Ruda i Metally, 1999.

    Google Scholar 

  25. Plaksin, E.K., Research and development of technology of hard alloys based on titanium carbonitride, Cand. Sci. (Eng.) Dissertation, Moscow: Moscow State Univ. Fine Chem. Technol., 1977.

    Google Scholar 

  26. Muzykant, Ya.A. and Samoilov, V.S., Rezhushchie instrumenty s plastinami iz bezvol’framovykh tverdykh splavov (Cutting Tools with Plates from Non-Tungsten Hard Alloys), Moscow: Nauchno-Issled. Inst. Mashinostr., 1984, pp. 56–58.

    Google Scholar 

  27. Panov, V.S., Mitin, B.S., and Tumanov, A.V. The kinetics of wetting of carbide and titanium carbonitride by melts of nickel intermetallides, Zh. Fiz. Khim., 1980, vol. 54, no. 6, pp. 14–34.

    Google Scholar 

  28. Panov, V.S. and Tumanov, A.V., Physical and mechanical properties of hard TA-20 alloy, Tsvetn. Met., 1982, no. 10, pp. 11–13.

    Google Scholar 

  29. Panov, V.S., Tumanov, A.V., and Kots, Yu.F., Wetting of carbides of Ti–C–W system by Ni3Al melt, Izv. VUZov, Poroshk. Metall. Funkts. Pokrytiya, 1986, no. 5, pp. 37–40.

    Google Scholar 

  30. Panov, V.S., Tumanov, A.V., and Kots, Yu.F., The interaction of titanium carbide and carbonitride with nickelides, Sov. Powder Metall. Met. Ceram., 1986, vol. 25, no. 10, pp. 860–862.

    Article  Google Scholar 

  31. Panov, V.S., Kots, Yu.F., and Filimonova, A.A., Interaction between phases in the WC-Ni3Al system, Sov. Powder Metall. Met. Ceram., 1990, vol. 29, no. 7, pp. 564–567.

    Article  Google Scholar 

  32. Panov, V.S., Kots, Yu.F., and Filimonova, A.A., The structure of the composite material of the WC–Ni3Al system at liquid-phase sintering, Tsvetn. Met., 1993, no. 4, pp. 55–57.

    Google Scholar 

  33. Panov, V.S. and Sekridova, O.B., Deposition of silicon nitride coatings, Sov. Powder Metall. Met. Ceram., 1984, vol. 23, no. 4, pp. 293–296.

    Article  Google Scholar 

  34. Panov, V.S., Sekridova, O.B., and Bondarchuk, V.I., Gas-phase deposition of silicon nitride on hard alloys, in Effektivnost’ vnedreniya progressivnykh tekhnologii (Efficiency of Implementation of Advanced Technologies), Kuibyshev: KAN, 1984, pp. 27–29.

    Google Scholar 

  35. Panov, V.S. and Serdyuchenko, K.Yu., The influence of various types of plasticizers on the properties and structure of hard alloys, IX Mezhdunarodnaya konferentsiya “Porodorazrushayushchii i metalloobrabatyvayushchii instrument” (IX Int. Conf. “Mineral Destructive and Metalworking Tools”), Kyiv: Inst. Sverkhtverd. Mater. im. V.N. Bakulya, Nats. Akad. Nauk Ukr., 2006, no. 9, pp. 318–324.

    Google Scholar 

  36. Levashov, E.A., Rogachev, A.S., and Kurbatkina, V.V., Perspektivnye materialy i tekhnologii samorasprostranyayushchegosya temperaturnogo sinteza (Prospective Materials and Technologies of Self-Propagating High-Temperature Synthesis), Moscow: Mosk. Inst. Stali Splavov, 2011.

    Google Scholar 

  37. Kiryukhantsev-Korneev, F.V., Development of hard wear-resistant nanostructured coatings in the Ti–Si–N, Ti–B–N, Cr–B–N, Ti–Cr–B–N systems, Extended Abstract of Cand. Sci. (Eng.) Dissertation, Moscow: Natl. Univ. Sci. Technol., MISIS, 2004.

    Google Scholar 

  38. Pogozhev, Yu.S., Potanin, A.Yu., Levashov, E.A., Kochetov, N.A., Kovalev, D.Yu., and Rogachev, A.S., SHS of TiC–TiNi composites: effect of initial temperature and nanosized refractory additives, Int. J. Self-Propag. High-Temp. Synth., 2012, vol. 21, no. 4, pp. 202–211.

    Article  CAS  Google Scholar 

  39. Pogozhev, Yu.S., Levashov, E.A., Kudryashov, A.E., Zamulaeva, E.I., Novikov, A.V., and Potanin, A.Yu., Composite SHS materials based on titanium carbide and nikelide doped with a refractory component, Russ. J. Non-Ferrous Met., 2014, vol. 55, no. 1, pp. 83–91.

    Article  Google Scholar 

  40. Loginov, P., Mishnaevsky, L., Jr., Levashov, E., and Petrzhik, M., Diamond and cBN hybrid and nanomodified cutting tools with enhanced performances: development, testing and modeling, Mater. Des., 2015, vol. 88, pp. 310–319.

    CAS  Google Scholar 

  41. Froschhamer, L. and Fulrath, R.M., Direct observation of liquid-phase sintering in the system tungsten carbidecobalt, J. Mater. Sci., 1976, vol. 11, pp. 142–149.

    Article  Google Scholar 

  42. Panov, V.S., Shumenko, V.N., and Klimenko, A.D., “Wet” pressing of T5K10 hard alloy, XIX Mezhdunarodnaya konferentsiya “Porodorazrushayushchii i metalloobrabatyvayushchii instrument” (IX Int. Conf. “Mineral Destructive and Metalworking Tools”), Kyiv: Inst. Sverkhtverd. Mater. im. V.N. Bakulya, Nats. Akad. Nauk Ukr., 2016, no. 19, pp. 396–402.

    Google Scholar 

  43. Panov, V.S. and Shumenko, V.N., Tekhnologiya i svoistva spechennykh tverdykh splavov (Technology and Properties of Sintered Solid Alloys), Moscow: Mosk. Inst. Stali Splavov, 2013.

    Google Scholar 

  44. Andrievskii, R.A. and Ragulya, A.V., Nanostrukturnye materialy (Nanomaterials), Moscow: Akademiya, 2005.

    Google Scholar 

  45. Fal’kovskii, V.A., Innovatsii v tekhnologii tverdykh splavov: nano-i ul’tradispersnye struktury (Innovations in Technology of Solid Alloys: Nano-and Ultradispersed Structures), Moscow: Mosk. Gos. Univ. Tonkikh Khim. Tekhnol., 2008.

    Google Scholar 

  46. Narva, V.K., Eremeeva, Zh.V., Sharipzyanova, G.Kh., Ter-Vagonyants, Yu.S., and Apostolova, E.V., Effect of nanosized modifiers on the structure and properties of powdered 50KhNM steel, Materialovedenie, 2017, no. 4, pp. 22–27.

    Google Scholar 

  47. Kiryukhantsev-Korneev, F.V., Levashov, E.A., and Shtanskii, D.V., Nanostructured Ti–Cr–B–N coatings for carbide cutting tools, Izv. VUZov, Poroshk. Metall. Funkts. Pokrytiya, 2010, no. 2, pp. 39–46.

    Google Scholar 

  48. Tsvetkov, Yu.V., Nikolaev, A.V., and Samokhin, A.V., Plasma processes in metallurgy and technologies of inorganic materials, Avtom. Svarka, 2013, nos. 10–11, pp. 112–118.

    Google Scholar 

  49. Tsvetkov, Yu.V., Nikolaev, A.V., and Panfilov, S.A., Nizkotemperaturnaya plazma: Plazmennaya metallurgiya (Low-Temperature Plasma: Plasma Metallurgy), Novosibirsk: Nauka, 1992, pp. 133–137.

    Google Scholar 

  50. Kalamazov, R.U., Tsvetkov, Yu.V., and Kal’kov, A.A., Vysokodispersnye prorshki vol’frama i molibdena (Superfine Powders of Tungsten and Molybdenum), Moscow: Metallurgiya, 1988, pp. 57–62.

    Google Scholar 

  51. Blagoveshchenskii, Yu.V., Isaeva, N.V., and Mel’nik, Yu.I., Preparation of nanopowders of carbides and hard alloy mixtures using low-temperature plasma, Izv. VUZov, Poroshk. Metall. Funkts. Pokrytiya, 2013, no. 3, pp. 7–14.

    Google Scholar 

  52. Blagoveshchenskiy, Yu.V., Isayeva, N.V., and Blagoveshchenskaya, N.V., Methods of compacting nanostructured tungsten–cobalt alloys from nanopowders obtained by plasma chemical synthesis, Inorg. Mater.: Appl. Res., 2015, vol. 6, no. 5, pp. 415–426.

    Article  Google Scholar 

  53. Chuvildeev, V.N., Moskvicheva, A.V., and Lopatin, Y.G., Sintering of WC and WC–Co nanopowders with different inhibitors additions by SPS method, Proc. 17th Plansee Seminar—Int. Conf. on High Performance P/M Materials, Reutte, 2009, vol. 2, no. 53, pp. 623–627.

    Google Scholar 

  54. Konyashin, I., The formation of wear-resistant layers, including a stress-relaxing interlayer, during a chromium surface treatment of TiC or TiCN based cermets, Int. J. Refract. Met. Hard Mater., 1997, vol. 15, pp. 187–195.

    CAS  Google Scholar 

  55. Konyashin, I., Senchihin, V., Anikeev, A., and Glushkov, V., Development, production and application of novel grades of coated hard metals in Russia, Int. J. Refract. Met. Hard Mater., 1996, vol. 14, pp. 41–48.

    Article  CAS  Google Scholar 

  56. Konyashin, I.Yu., Healing of surface defects in hard materials by thin coatings, J. Vac. Sci. Technol., A, 1996, vol. 2, pp. 447–452.

    Article  Google Scholar 

  57. Konyashin, I.Yu. and Guseva, M.B., Thin films comparable with WC-Co cemented carbides as underlayers for hard and superhard coatings: the state of the art, Diamond Relat. Mater., 1996, vol. 5, pp. 575–579.

    Article  CAS  Google Scholar 

  58. Guseva, M.B., Babaev, V.G., Khvostov, V.V., et al., High quality diamond films on WC–Co surfaces, Diamond Relat. Mater., 1997, vol. 6, pp. 89–94.

    Article  CAS  Google Scholar 

  59. Zaitsev, A.A., Vershinnikov, V.I., and Konyashin, I., High-quality cemented carbides on the basis of nearnano and coarse-grain WC powders obtained by selfpropagating high-temperature synthesis (SHS), Int. J. Self-Propag. High-Temp. Synth., 2015, vol. 22, pp. 152–160.

    Article  CAS  Google Scholar 

  60. Zaitsev, A.A., Vershinnikov, V.I., Konyashin, I., et al., Cemented carbides from WC powders obtained by the SHS method, Mater. Lett., 2015, vol. 158, pp. 329–332.

    Article  CAS  Google Scholar 

  61. Zaytsev, A.A., Borovinskaya, I.P., Vershinnikov, V.I., Konyashin, I., Patsera, E.I., Levashov, E.A., and Ries, B., Near-nano and coarse-grain WC powders obtained by the self-propagating high-temperature synthesis and cemented carbides on their basis. Part I: Structure, composition and properties of WC powders, Int. J. Refract. Met. Hard Mater., 2015, vol. 50, pp. 146–151.

    Article  CAS  Google Scholar 

  62. Gnatenko, I.A., Evaluation of the state of carbide skeleton of tungsten-cobalt hard alloys, Cand. Sci. (Eng.) Dissertation, Kyiv: Bakul Inst. Superhard Mater., 2017.

    Google Scholar 

  63. Bondarenko, V.P. and Gnatenko, I.A., Control of the carbide skeleton in sintered hard the WC-Co alloys, XIV Mezhdunarodnaya konferentsiya “Porodorazrushayushchii i metalloobrabatyvayushchii instrument” (IX Int. Conf. “Mineral Destructive and Metalworking Tools”), Kyiv: Inst. Sverkhtverd. Mater. im. V.N. Bakulya, Nats. Akad. Nauk Ukr., 2011, no. 14. pp. 423–437.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Panov.

Additional information

Original Russian Text © V.S. Panov, 2018, published in Materialovedenie, 2018, No. 1, pp. 9–14.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panov, V.S. Occurrence and Ways of Development of Manufacture of Domestic Hard Alloy Products. Inorg. Mater. Appl. Res. 9, 693–698 (2018). https://doi.org/10.1134/S2075113318040263

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075113318040263

Keywords

Navigation