Skip to main content
Log in

Effect of supplementation different hydrophobic silicas on the stability of foams

  • Materials for Ensuring Human Vital Activity and Environmental Protection
  • Published:
Inorganic Materials: Applied Research Aims and scope

Abstract

In this paper, we investigated two types of silicas obtained by the sol-gel synthesis (silica 1) and solgel synthesis of endotemplates (fructose) (silica 2). In the first phase of work, the surface characteristics of the synthesized silicas were evaluated. Area measurement and pore volume of silica samples showed that the surface of silica 2 had a narrow slitlike pores, and the pore size was 3.15–3.17 nm. Thermochemical studies of silica showed that the content of hydroxyl groups per 1 g of silica was greater in the case of silica synthesized by endotemplate technology. The obtained data on the texture parameters and chemical activity of the surface were used in the study of systems containing surfactant and silica in aqueous media. Common for particles of synthesized silica is that the form of particles in the solutions remains spherical and the zeta potential decreases. Moreover, the neutralization of the surface charge of silica 2 takes place to a greater extent than the neutralization of the charge on the surface of particles of silica 1. The greatest practical interest may be the pre-foaming solution with the addition of silica 2, because the maximum lifetime was recorded in this solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Frolova, A.M., Chukhleb, M.A., Drobot, A.V., Krokhmal’, A.P., Boichenko, A.P., and Loginova, L.P., Production of fine monolithic layers of inorganic sorbent by sol-gel synthesis, Vestn. Kharkovsk. Nats. Univ., Khim., 2008, no. 820, no. 16 (39), pp. 160–167.

    CAS  Google Scholar 

  2. Parfenyuk, E., Aleshin, N., Antsiferova, Yu., and Sotnikova, N., Transport nanosystem for the immune correction of macrophage functions in endometriosis, Nanoindustriya, 2012, vol. 1, no. 31, pp. 58–64.

    Google Scholar 

  3. Chew, T.-L., Ahmad, A.L., and Bhatia, S., Ordered mesoporous silica (OMS) as an adsorbent and membrane for separation of carbon dioxide (CO2), Adv. Colloid Interface Sci., 2010, vol. 153, pp. 43–57.

    Article  CAS  Google Scholar 

  4. Derkach, S.R. and Zotova, K.V., Rheology of food emulsions, Vestn. Mosk. Gos. Tekh. Univ., 2012, vol. 15, no. 1, pp. 84–95.

    Google Scholar 

  5. Binks, B.P. and Rodrigues, J.A., synergistic interaction in emulsions stabilized by a mixture of silica, Langmuir, 2007, vol. 23, pp. 3626–3636.

    Article  CAS  Google Scholar 

  6. Shabanova, N.A. and Sarkisov, P.D., Osnovy zol’-gel’ tekhnologii nanodispersnogo kremnezema (Fundamentals of Sol-Gel Technology of Nanodispersed Silica), Moscow: Akademkniga, 2004.

    Google Scholar 

  7. Shüth, F., Endo- and exotemplating to create high-surface- area inorganic materials, Angew. Chem., Int. Ed., 2003, vol. 42, pp. 3604–3622.

    Article  Google Scholar 

  8. Beck, J.S., Vartuli, J.C., Kennedy, G.J., Kresge, C.T., Roth, W.J., and Schramm, S.E., Molecular or supramolecular templating: Defining the role of surfactant chemistry in the formation of microporous and mesoporous molecular sieves, Chem. Mater., 1994, vol. 6, pp. 1816–1821.

    Article  CAS  Google Scholar 

  9. Gonzenbach, U.T., Studart, A.R., Tervoort, E., and Gauckler, L.J., Stabilization of foams with inorganic colloidal particles, Langmuir, 2006, vol. 22, pp. 10983–10988.

    Article  CAS  Google Scholar 

  10. Erasov, V.S., Pletnev, M.Yu., and Pokidko, B.V., Stability and rheology of foams containing microbial polysaccharide and particles of silica and bentonite clay, Colloid J., 2015, vol. 77, no. 5, pp. 614–621.

    Article  CAS  Google Scholar 

  11. Colloidal Silica: Fundamentals and Applications, Surfactant Science, Bergna, H.E., and Roberts, W.O., Eds., Boca Raton: CRC, 2005, vol. 131. https://books.google.ru/ books?id=xZ0nNHdFCKsC&printsec=frontcover&hl=ru#v=onepage&q&f=false.

  12. Babicka, F., Groppa, S., and Kätzelb, U., Manuel Vorbau dynamic light scattering of dispersed fumed silica aggregates, Powder Technol., 2012, vol. 217, pp. 39–45. doi 10.1016/j.powtec.2011.10.064

    Article  Google Scholar 

  13. Stober, W., Fink, A., and Bohn, E., Controlled growth of monodisperse silica spheres in micron size range, Colloid Interface Sci. 1968, no. 26, pp. 62–69.

    Article  Google Scholar 

  14. Taratanov, N.A., Lebedeva, N.Sh., and Potemkina, O.V., The silica dioxide modification for creation of doublepurpose fire extinguishing compositions, Pozhary Chrezvychainye Situatsii: Predotvrashchenie, Likvidatsiya, 2016, no. 1, pp. 66–70.

    Google Scholar 

  15. Sing, K.S.W., Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (recommendations 1984), Pure Appl. Chem., 1985, vol. 57, no. 4, pp. 603–619.

    Article  CAS  Google Scholar 

  16. NIST Chemistry WebBook. http://webbook.nist.gov/ chemistry/.

  17. Zhuravlev, L.T., The surface chemistry of amorphous silica. Zhuravlev model, Colloids Surf., A, 2000, vol. 173, pp. 1–38.

    Article  CAS  Google Scholar 

  18. Zhuravlev, L.T. and Potapov, V.V., Density of silanol groups on the surface of silica precipitated from a hydrothermal solution, Russ. J. Phys. Chem. A, 2006, vol. 80, no. 7, pp. 1119–1128.

    Article  CAS  Google Scholar 

  19. Lisichkin, G.V. and Fadeev, A.Y., Khimiya privitykh poverhnostnykh soedinenii (Chemistry of Grafted Surface Compounds), Moscow: Fizmatlit, 2003.

    Google Scholar 

  20. Dorcheh, A.S. and Abbasi, M.H., Silica aerogel: Synthesis, properties, and characterization, J. Mater. Process. Technol., 2008, vol. 199, nos. 1–3, pp. 10–26.

    Article  Google Scholar 

  21. Ek, S., Root, A., Peussa, M., et al., Determination of the hydroxyl group content in silica by thermogravimetry and a comparison with 1 H MAS NMR results, Thermochim. Acta, 2001, vol. 379, pp. 201–212.

    Article  CAS  Google Scholar 

  22. Binks, B.P., Particles as surfactants-similarities and differences, Curr. Opin. Colloid Interface Sci., 2002, vol. 7, nos. 1–2, pp. 21–41.

    Article  CAS  Google Scholar 

  23. Vignati, E., Piazza, R., and Lockhart, T.P., Pickering emulsions: Interfacial tension, colloidal layer morphology, and trapped-particle motion, Langmuir, 2003, vol. 19, pp. 6650–6656.

    Article  CAS  Google Scholar 

  24. Binks, B.P. and Horozov, T.S., Aqueous foams stabilized solely by silica nanoparticles, Angew. Chem., 2005, vol. 117, pp. 3788–3791.

    Article  Google Scholar 

  25. Lepori, L. and Gianni, P., Partial molar volumes of ionic and nonionic organic solutes in water: A simple additivity scheme based on the intrinsic volume approach, J. Solution Chem., 2000, vol. 29, no. 5, pp. 405–447.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Sh. Lebedeva.

Additional information

Original Russian Text © N.Sh. Lebedeva, N.A. Taratanov, E.V. Barinova, O.V. Potemkina, 2017, published in Perspektivnye Materialy, 2017, No. 5, pp. 45–55.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lebedeva, N.S., Taratanov, N.A., Barinova, E.V. et al. Effect of supplementation different hydrophobic silicas on the stability of foams. Inorg. Mater. Appl. Res. 8, 727–733 (2017). https://doi.org/10.1134/S2075113317050148

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075113317050148

Keywords

Navigation