Skip to main content
Log in

Geometrical Model of Polymorphous Transformations in Titanium and Zirconium

  • Structure and Polymorphic Transformations
  • Published:
Metal Science and Heat Treatment Aims and scope

Abstract

A geometrical model of transformation of a body-centered cubic lattice of α-phase into a hexagonal close-packed lattice of α-phase is developed with the aim of explaining the special features of the crystal geometry of formation of martensite phases in titanium and zirconium and in alloys based on them. The transformation is described as mutual reconstruction of coordination polyhedra of the cubic and hexagonal lattices through an intermediate configuration of the crystal structure of ω-phase. In the language of algebraic geometry the transition is implemented as reconstruction of an 11-atom cluster that represents a union of three octahedra around a common edge into an 11-atom cluster composed of 11 tetrahedra united over faces. Experimentally observed orientation relations and habit planes at α → ω and β → α transformations are describable by elements of the structure of the mentioned clusters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. V. S. Kraposhin, A. L. Talis, and M. N. Pankova, “Polytope topological approach to description of martensitic transformation,” Metalloved. Term. Obrab. Met., No. 8, 23–28 (1999).

  2. V. S. Kraposhin, A. L. Talis, and J.-M. Dubois, “Structural realization of the polytope approach for the geometrical description of the transition of a quasicrystal into a crystalline phase,” J. Phys., Condens. Matter., 14, 8987–8996 (2002).

    Article  CAS  Google Scholar 

  3. V. S. Kraposhin, M. N. Pankova, A. L. Talis, and Yu. A. Freiman, “An application of a polytope (4D-polyhedron) concept for the description of polymorphic transitions: iron martensite and solid oxygen,” J. Phys. IV France, 112, 119–122 (2003).

    Article  CAS  Google Scholar 

  4. K. Aizu, “The concepts of ‘prototype’ and ‘prototypic phase’ — their difference and others,” J. Phys. Soc. Japan, 44, 683 (1978).

    Article  Google Scholar 

  5. G. C. Gamielson, Science, 140(3562), 72 (1963).

    Google Scholar 

  6. V. A. Zil'berstein, G. I. Nosova, and E. I. Estrin, “Alpha-omega-transformation in titanium and zirconium,” Fiz. Met. Metalloved., 35(3), 584–589 (1973).

    Google Scholar 

  7. J. M. Silcock, et al., Nature, 175(4460), 731 (1955).

    CAS  Google Scholar 

  8. Yu. A. Bagaryatskii, et al., Dokl. Akad. Nauk SSSR, Ser. Fiz. Met. Metalloved., 105(6), 1225 (1955).

    CAS  Google Scholar 

  9. G. I. Nosova, Phase Transformations in Titanium Alloys [in Russian], Metallurgiya, Moscow (1968).

    Google Scholar 

  10. V. S. Kraposhin, N. B. D'yakonova, I. V. Lyasotskii, and Wand Yanjin, “Cluster model of formation of incommensurable ω-phase in titanium-iron alloys,” Metalloved. Term. Obrab. Met., No. 6, 29–35 (2004).

    Google Scholar 

  11. V. A. Zil'berstein, A Study of Phase Transformations in Some Transition Metals under Pressure, Author's Abstract of Candidate's Thesis [in Russian], Moscow (1974).

  12. M. P. Usikov and V. A. Zil'berstein, “The orientation relationship between the α-and ω-phases of titanium and zirconium,” Phys. Stat. Sol. (a), 19(1), 53–58 (1973).

    CAS  Google Scholar 

  13. B. A. Kul'nitskii, Crystal Geometry of Polymorphous Transformation in Titanium, Zirconium, and Their Alloys at High Pressure, Author's Abstract of Candidate's Thesis [in Russian], Moscow (1989).

  14. Yu. L. Al'shevskii, B. A. Kul'nitskii, and M. P. Usikov, “The mechanism and crystallographic features of α ↔ ω transformation in Zr-Nb alloys,” Fiz. Met. Metalloved., 68, Issue 1, 95–103 (1989).

    Google Scholar 

  15. S. C. Gupta, S. K. Sikka, and R. Chidambaram, “On orientation relations between α and ω phases in Zr by texture studies using neutron diffraction method,” Scripta Metall., 19(10), 1167–1169 (1985).

    Article  CAS  Google Scholar 

  16. A. Rabinkin, M. Talianker, and O. Botstein, “Crystallography and a model of the α → ω phase transformation in zirconium,” Acta Metall., 29(4), 691–698 (1981).

    Article  CAS  Google Scholar 

  17. W. Pearson, The Crystal Chemistry and Physics of Metals and Alloys, Wiley, New-York (1972).

    Google Scholar 

  18. K. Shubert, Crystal Structures of Two-Component Phases [Russian translation], Metallurgiya, Moscow (1971).

    Google Scholar 

  19. S. C. Serov and J. D. Corbett, “A remarkable hypoelectronic indium cluster in K8In11,” Inorg. Chem., 30(26), 4875–4877 (1991).

    Article  Google Scholar 

  20. H. Varlimont and L. Diley, Martensitic Transformations in Alloys Based on Copper, Silver, and Gold [Russian translation], Nauka, Moscow (1980).

    Google Scholar 

  21. S. Chakravorty and C. M. Wayman, “The martensitic transformation in β′ Ni-Al alloys,” Metall. Trans., A7, 555–568, 569–582 (1976).

    Google Scholar 

  22. T. Saburi, et al., “Electron microscope observation of the early stages of thermoelastic martensitic transformation in a Ti-Ni-Cu alloy,” J. Less-Common Met., 118(2), 217–226 (1986).

    Article  CAS  Google Scholar 

  23. T. Miazaki et al, “The habit plane and transformation strains associated with the martensitic transformation in Ti-Ni single crystals,” Scripta Metall., 18(19), 883–888 (1984).

    Article  Google Scholar 

  24. A. Fourdeux, H. Bruyas, D. Weber, et al., “Diffuse scattering in quenched Fe-Al Alloys,” Scripta Metall., 14, 485–488 (1980).

    Article  CAS  Google Scholar 

  25. N. Nakagawa, S. Matsumura, N. Kuwano, and K. Oki, “Electron microscopic observation of omega-like phase in an Fe-26.9 at.% Ga alloy,” Scripta Metall., 21, 461–464 (1987).

    Article  CAS  Google Scholar 

  26. G. B. Grad, A. F. Gullermet, and J. R. Granada, “Structural properties and stability of the bcc and omega phases in the Zr-Nb system. Part III. Analysis of interatomic distances and chemical bonding effects,” Z. Metallkd., 87, 726–731 (1996).

    CAS  Google Scholar 

  27. S. Banerjee and R. W. Cahn, “An ordered ω-phase in the rapidly solidified Zr-27 at.% Al alloy,” Acta Metall., 31, 1721–1735 (1983).

    Article  CAS  Google Scholar 

  28. P. Georgopoulos and J. B. Cohen, “The defect structure and Debye-Waller factors vs. composition in α Ni1 ± x Al1 ± x ,” Scripta Metall., 11, 147–150 (1977).

    Article  CAS  Google Scholar 

  29. F. Reynaud, “Anomalies in the electron diffraction patterns of nickel-rich β′-NiAl alloys,” Scripta Metall., 11, 765–770 (1977).

    Article  CAS  Google Scholar 

  30. E. V. Shalaeva and A. F. Prekul, “Structure state of β-solid solution in quenched quasicrystal-forming alloys of Al61Cu26Fe13,” Phys. Stat. Sol. (a), 180, 411–425 (2000).

    Article  CAS  Google Scholar 

  31. A. Prasetyo, F. Reynaud, and H. Warlimont, “Elastic constant anomalies and precipitation of an omega phase in some metastable Cu2 + x Mn1 − x Al bcc alloys,” Acta Metall., 24, 651–658 (1976).

    Article  CAS  Google Scholar 

  32. A. Prasetyo, F. Reynaud, and H. Warlimont, “Omega phase in quenched β-brasss and its relation to elastic anomalies,” Acta Metall., 24, 1009–1016 (1976).

    Article  CAS  Google Scholar 

  33. R. Strychor, J. C. Williams, and W. A. Soffa, “Phase transformations and modulated microstructures in Ti-Al-Nb alloys,” Metall. Trans. A, 19A, 225–234 (1988).

    CAS  Google Scholar 

  34. A. F. Edneral and M. D. Perkas, “Formation of metastable ordered ω-phase in aging of martensite of an iron-nickel-cobalt-molybdenum alloy,” Fiz. Met. Metalloved., 33, Issue 2, 315–325 (1972).

    CAS  Google Scholar 

  35. S. Wemig, et al., J. Metals, 6(11), 1280 (1954).

    Google Scholar 

  36. D. Schryvers, L. Toth, Y. Ma, and L. Tanner, J. de Physique IV, Colloque C2, supplement au Journal de Physique III, 5, 2-299–2-304 (1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 9, pp. 8 – 16, September, 2005.

This work was performed with financial support of the Russian Fund for Fundamental Research (Grants 05-02-17141 and 03-02-16446). The authors are grateful to I. V. Lyasotskii for fruitful discussions of the material.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kraposhin, V.S., Talis, A.L. & Yanjin, W. Geometrical Model of Polymorphous Transformations in Titanium and Zirconium. Met Sci Heat Treat 47, 402–410 (2005). https://doi.org/10.1007/s11041-006-0002-5

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11041-006-0002-5

Keywords

Navigation