Skip to main content
Log in

Tribological behavior of aluminum-matrix composites reinforced with carbon nanostructures

  • New Methods of Treatment and Production of Materials with Required Properties
  • Published:
Inorganic Materials: Applied Research Aims and scope

Abstract

Aluminum-matrix composite materials reinforced with carbon nanostructures were prepared by hot pressing of the powders produced by mechanical activation of aluminum and a carbon nanostructure. C60 fullerenes, multiwalled carbon nanotubes, onion-like carbon (OLC), and flake graphite were used as the reinforcing phase. The structures and the mechanical and tribological properties of the composite materials are investigated. It is shown that introduction of carbon nanostructures into the Al matrix is an effective way to improve the physicomechanical and tribological properties of Al-matrix composite materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nichiporchik, S.N., Korzhentsevskii, M.I., Kalachev, V.F., et al., Detali mashin v primerakh i zadachakh (Machine Details in Examples and Tasks), Minsk: Vysh. Shkola, 1981.

    Google Scholar 

  2. Chernyshova, T.A., Kobeleva, L.I., and Bolotova, L.K., Discontinuously reinforced composite materials with aluminum alloy matrices and their tribological properties, Russ. Metall. (Metally), 2001, No. 6, pp. 633–646.

    Google Scholar 

  3. Lopez, V.H., Scoles, A., and Kennedy, A.R., The thermal stability of TiC particles in an Al-7 wt % Si alloy, Mater. Sci. Eng. A, 2003, vol. 356, pp. 316–325.

    Article  Google Scholar 

  4. Chernyshova, T.A., Kobeleva, L.I., and Lemesheva, T.V., Dispersion filled composite materials on antifriction silumine base for sliding friction, Perspekt. Mater., 2004, No. 3, pp. 69–75.

    Google Scholar 

  5. Evdokimov, I.A., Pivovarov, G.I., Blank, V.D., Aksenekov, V.V., and Kirichenko, A.N., Aluminumbased metal-carbon composite material, Izv. Vyssh. Ucheb. Zav., Ser. Khim. Khim. Tekhnol., 2011, vol. 54, no. 7, pp. 58–62.

    CAS  Google Scholar 

  6. Hurang H., Landon O., and Ayo, A., Characterizing and modeling of mechanical properties of nanocomposites. Review and evaluation, J. Min. Mater. Char. Eng., 2010, vol. 9, pp. 275–319.

    Google Scholar 

  7. Esawia, A.M.K., Morsib, K., Sayeda, A., Tahera, M., and Lankab, S., The influence of carbon nanotube (CNT) morphology and diameter on the processing and properties of CNT reinforced aluminum composites. Composites A, Appl. Sci. Manuf., 2011, vol. 42, pp. 234–243.

    Article  Google Scholar 

  8. Chunfeng, D., XueXi, Z., Dezun, W., Qiang, L., and Aibin, L., Preparation and characterization of carbon nanotubes/aluminum matrix composites, Mater. Lett., 2007, vol. 61, pp. 1725–1728.

    Article  Google Scholar 

  9. Choia, H.J., Leeb, S.M., and Baea, D.H., Wear characteristic of aluminum-based composites containing multi-walled carbon nanotubes, Wear, 2010, vol. 270, pp. 12–18.

    Article  Google Scholar 

  10. Kleiner, S., Bertocco, F., Khalid, F.A., and Beffort, O., Decomposition of process control agent during mechanical milling and its influence on displacement reactions in the Al-TiO2 system, Mater. Chem. Phys., 2005, vol. 89, pp. 362–366.

    Article  CAS  Google Scholar 

  11. Saberi, Y., Zebarjad, S.M., and Akbari, G.H., On role of stearic acid on morphology of Al-SiC composite powders produced by mechanical alloying method, Powder Metallurgy, 2009, vol. 52, pp. 61–64.

    Article  CAS  Google Scholar 

  12. Zhang, Y.F., Lu, L., and Yap, S.M., Prediction of the amount of PCA for mechanical milling, J. Mater. Proc. Technol., 1999, vol. 89–90, pp. 260–265.

    Article  Google Scholar 

  13. Chichinadze, A.V., Berliner, E.M., Braun, E.D., et al., Trenie, iznos i smazka (tribologiya i tribotekhnika) (Friction, Wear and Lubrication (Tribology and Tribotechnics), Moscow: Mashinostroenie, 2003.

    Google Scholar 

  14. Zhang, Z.F., Zhang, L.C., and Mai, Y.-W., Modeling friction and wear of scratching ceramic particle reinforced metal composites, Wear, 1994, vol. 176, pp. 231–237.

    Article  CAS  Google Scholar 

  15. Wang, A.G. and Rack, H.J., Abrasive wear of silicon carbide particulate- and whisker-reinforced 7091 aluminum matrix composites, Wear, 1991, vol.146, pp. 337–348.

    Article  CAS  Google Scholar 

  16. Narayan, M., Surappa, M.K., and Pramila, B.N., Dry sliding wear of Al alloy 2024-Al2O3 particle metal matrix composites, Wear, 1995, vol. 181–183, pp. 563–570.

    Article  Google Scholar 

  17. Zhang, J. and Alpas, A.T., Transition between mild and severe wear in aluminum alloys, Acta Mater., 1997, vol. 45, pp. 513–528.

    Article  CAS  Google Scholar 

  18. Deuis, R.L., Subramanian, C., and Yellup, J.M., Dry sliding wear of aluminum composites. A review, Compos. Sci. Technol., 1997, vol. 57, pp. 415–435.

    Article  CAS  Google Scholar 

  19. Riahi, A.R. and Alpas, A.T., The role of tribo-layers on the sliding wear behavior of graphitic aluminum matrix composites, Wear, 2001, vol. 251, pp. 1396–1407.

    Article  Google Scholar 

  20. Sato, H., Murase, T., Fujii, T., Onaka, S., Watanabe, Y., and Kato, M., Formation of wear-induced layer with nanocrystalline structure in Al-Al3Ti functionally graded material, Acta Mater., 2008, vol. 56, pp. 4549–4558.

    Article  CAS  Google Scholar 

  21. Evdokimov, I.A., Blank, V.D., Pivovarov, G.I., Vaganov, V.E., Reshetnyak, V.V., Perfilov, S.A., Kirichenko, A.N., Aksenenkov, V.V., Bagramov, R.Kh., and Tat’yanin, E.V., Study of physical-chemical properties of nanostructured composite materials of aluminum-nanocarbon system, Tr. VIII mezhdunar. konf. “Uglerod: fundamental’nye problemy nauki, materialovedenie, tekhnologiya” (Proc. 8th Int. Conf. “Carbon: Fundamental Problems of Science, Material Science, Technology”), Troitsk, Russia, 2012.

    Google Scholar 

  22. Sheng-ming, Z., Xiao-bin, Z., Zhi-peng, D., Chunyan, M., Guo-liang, X., and Wen-ming, Z., Fabrication and tribological properties of carbon nanotubes reinforced Al composites prepared by pressureless infiltration technique, Composite A, 2007, vol. 38, pp. 301–306.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Evdokimov.

Additional information

Original Russian Text © I.A. Evdokimov, T.A. Chernyshova, G.I. Pivovarov, P.A. Bykov, L.A. Ivanov, V.E. Vaganov, 2013, published in Fizika i Khimiya Obrabotki Materialov, 2013, No. 5, pp. 58–65.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Evdokimov, I.A., Chernyshova, T.A., Pivovarov, G.I. et al. Tribological behavior of aluminum-matrix composites reinforced with carbon nanostructures. Inorg. Mater. Appl. Res. 5, 255–262 (2014). https://doi.org/10.1134/S2075113314030071

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075113314030071

Keywords

Navigation