Skip to main content
Log in

AUV acoustic positioning methods

  • Published:
Gyroscopy and Navigation Aims and scope Submit manuscript

Abstract

The paper provides an overview of acoustic positioning methods for autonomous underwater vehicles. Their advantages and disadvantages are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ageev, M.D., Kasatkin, B.A., Kiselev, L.V. et al., Avtomaticheskie podvodnye apparaty (Autonomous Underwater Vehicles), Leningrad: Sudostroenie, 1981.

    Google Scholar 

  2. Ageev, M.D., Kiselev, L.V., Matvienko, Yu.V. et al., Avtonomnye podvodnye roboty. Sistemy i tekhnologii (Autononous Underwater Robots. Systems and Technologies), Moscow: Nauka, 2005.

    Google Scholar 

  3. Inzartsev, A.V., Kamornyi, A.V., L’vov, O.Yu., Matvienko, Yu.V., and Rylov, N.I., Application of autonomous underwater vehicle for Arctic research, Podvodnye Issledovaniya i Robototekhnika, 2007, no. 2(4), pp. 5–14.

    Google Scholar 

  4. Gizitdinova, M.R. and Kuz’mitskii, M.A., Mobile underwater robots in modern oceanography and hydrophysics, Fundamental’naya i Prikladnaya Gidrofizika, 2010, vol. 3, no. 1 (7), pp. 4–13.

    Google Scholar 

  5. Bozhenov, Yu.A., Using autonomous underwater vehicles for research in Arctic and Antarctic, Fundamental’naya i Prikladnaya Gidrofizika, 2011, vol. 4, no. 1, pp. 4–68.

    Google Scholar 

  6. Millar, G. and Mackay, L., Maneuvering under the ice, Sea Technology, 2015, vol. 56, no. 4, pp. 35–38.

    Google Scholar 

  7. Illarionov, G.Yu., Sidenko, K.S., and Bocharov, L.Yu., Ugroza iz glubiny: XXI vek (Threat from the Depth: 21st century), Khabarovsk: Khabarovskaya kraevaya tipografiya, 2011.

    Google Scholar 

  8. Illarionov, G.Yu., and Sidenko, K.S., Autonomous underwater microvehicles and their possible application in military sphere, Naukoemkie Tekhnologii, 2009, vol. 10, no.3.

    Google Scholar 

  9. Belousov, I., Existing and perspective autonomous underwater vehicles of USNavy, Zarubezhnoe Voennoe Obozrenie, 2013, no. 5, pp. 79–88.

    Google Scholar 

  10. Kuz’mitskii, M.A. and Gizitdinova, M.R, Mobile underwater robots in the solution of Navy problems: Modern technologies and perspectives, Fundamental’naya i Prikladnaya Gidrofizika, 2011, vol. 4, no. 3, pp. 37–48.

    Google Scholar 

  11. Jane's International Defense, 2013, September, p. 15; 2013, December, p.22.

  12. Rell Pros-Wellenhof, B., Navigation: Principles of Positioning and Guidance, Springer, 2007, pp. 5–6.

    Google Scholar 

  13. Kinsey, J.C., Eustice, R.M., and Whitcomb, L.L., A survey of underwater vehicle navigation: Recent advances and new challenges, IFAC Conference on maneuvering and control of marine craft, Lisbon, 2006.

    Google Scholar 

  14. Dubrovin, F.S. and Scherbatyuk, A.F., Studying some algorithms for AUV navigation using a single beacon: The results of simulation and sea trials, Gyroscopy and Navigation, 2016, no. 2, pp. 189–197.

    Article  Google Scholar 

  15. Bayat, M., Crasta, N., Aguiar, A.P., and Pascoal, A.M., Range-based underwater vehicle localization in the presence of unknown ocean currents: Theory and experiments, IEEE Transactions on control systems technology, January 2015.

    Google Scholar 

  16. Alcocer, A., Positioning and navigation systems for robotic underwater vehicles, PhD Thesis, Instituto Superior Tecnico, Lisbon, 2009.

    Google Scholar 

  17. Miln, P.H., Underwater Acoustic Positioning Systems, 1983.

  18. Chan, Y.T. and Ho, K.C., A simple and efficient estimator for hyperbolic location, IEEE Transactions on Signal Processing, 1994, vol. 42, no. 8, p. 1905–1915.

    Article  Google Scholar 

  19. Thomas, H., GIB Bouys: An interface between space and the depths of the ocean, Proceedings of the IEEE Symposium on Autonomous Underwater Vehicles, Cambridge, MAUSA, 1998, pp. 181–184.

    Google Scholar 

  20. Desset, S., Damus, R., Morash, J., and Bechaz, C., Use of GIBs in AUVs for underwater archaeology, Sea Technology, 2003, vol. 44, no. 12, pp. 22–27.

    Google Scholar 

  21. Moreno-Salinas, D., Pascoal, A.M., and Aranda, J., Optimal sensor placement for multiple target positioning with range-only measurements in two-dimensional scenarios, Sensors, 2013, vol. 13, pp. 10674–10710.

    Article  Google Scholar 

  22. Moreno-Salinas, D., Pascoal, A.M., and Aranda, J., Optimal sensor placement for underwater positioning with uncertainty in the target location, IEEE Int. Conf. on Robotics and Automation (ICRA), 2011, pp. 2308–2314.

    Google Scholar 

  23. Eustice, R.M., Singh, H., and Whitcomb, L.L., Synchronous-clock one-way-travel-time acoustic navigation for underwater vehicles, Field Robotics, special issue on state of the art in maritime autonomous surface and underwater vehicles, 2011.

    Google Scholar 

  24. Kebkal, K.G. and Bannasch, R., Sweep-spread carrier for underwater communication over acoustic channels with strong multipath propagation, J. Acoust. Soc. Am., 2002, vol. 112(5), pp. 2043–2052.

    Article  Google Scholar 

  25. Kebkal, K.G. and Bannasch, R., Process and system form information transfer, Patent N US6628724 B2, 2002.

    Google Scholar 

  26. Kebkal, K.G., Kebkal, O.G, and Bannasch, R., Synchronisation of underwater communication receivers by means of swept pulses, Proceedings of the 4th International Conference on Underwater Acoustic Measurements: Technologies and Results, Kos, Greece, 20-24 June, 2011.

    Google Scholar 

  27. Kebkal, K.G., Kebkal, A.G., and Kebkal, O.G., Synchronization tools of acoustic communication devices in control of underwater sensors, distributed antennas, and autonomous underwater vehicles, Giroskopiya i Navigatsiya, 2014, no. 2, pp. 70–85.

    Google Scholar 

  28. Oshman, Y. and Davidson, P., Optimization of observer trajectories for bearings-only target localization, IEEE Tran. on Aerospace and Electronic Systems, 1999, vol. 35, no.3.

    Google Scholar 

  29. Moreno-Salinas, D., Pascoal, A.M., and Aranda, J., Sensor networks for optimal target localization with bearings only measurements in constrained threedimensional scenarios, Sensors, 2013, vol. 13(8), pp. 10386–10417.

    Article  Google Scholar 

  30. Hydro. Product Survey–Long Baseline Systems. Hydro-International. http://www.hydro-international.com/productsurvey/id12LongBaselineSystems.html.

  31. Mirza, D., Schurgers, C., and Kastner, R., Real-time collaborative tracking for underwater networked systems, Proc. WUWNet 2012.

    Google Scholar 

  32. Cheng, X., Shu, H., Liang, Q., and Du, D., Silent positioning in underwater acoustic sensor networks, IEEE Trans. Veh. Technol, 2008, vol. 57, pp. 1756–1766.

    Article  Google Scholar 

  33. Tan, H.P., Eu, Z.A., and Seah, W.K.G., An enhanced underwater positioning system to support deepwater installations, Proc. of the MTS/IEEE Oceans, Biloxi, 2009.

    Google Scholar 

  34. Tan, H.P., Gabor, A.F., Eu, Z.A., and Seah, W.K.G., A wide coverage positioning system (WPS) for underwater localization, Proc. of IEEE ICC, 2010

    Google Scholar 

  35. Bian, T., Venkatesan, R., and Li, C., Design and evaluation of a new localization scheme for underwater acoustic sensor networks, Proc. of the IEEE Globecom, 2009, pp. 5043–5047.

    Google Scholar 

  36. Bian, T., Venkatesan, R., and Li, C., An improved localization method using error probability distribution for underwater sensor networks, Proc. of the IEEE ICC, 2010.

    Google Scholar 

  37. Othman, A.K., GPS-less localization protocol for underwater acoustic networks, Proc. of the IFIP International Conf. Wireless and Optical Comm. Networks, 2008.

    Google Scholar 

  38. Mirza, D., and Schurgers, C., Motion-aware selflocalization for underwater networks, Proc. of the WUWNet, 2008, pp. 51–58.

    Chapter  Google Scholar 

  39. Tian, Ch., Liu, W., Jin, J., Wang, Y., and Mo, Y., Localization and synchronization for 3D underwater acoustic sensor networks, LNCS, 2007, pp. 622–631.

    Google Scholar 

  40. Jinwang, Yi., Mirza, D., Schurgers, C., and Kastner, R., ToA-TS: Time of arrival based joint time synchronization and tracking for mobile underwater systems, Proceedings of the Eighth ACM International Conference on Underwater Networks and Systems, 2013.

    Google Scholar 

  41. Jinwang, Yi., Mirza, D., Schurgers, C., and Kastner, R., Joint time synchronization and tracking for mobile underwater systems, Proc. WUWNet, 2013.

    Google Scholar 

  42. Liu, J., Wang, Z., Zuba, M., Peng, Z., Cui, J.-H., and Zhou, S., JSL: Joint time synchronization and localization design with stratification compensation in mobile underwater sensor networks, Proc. of the 9th Annual IEEE Communication Society Conference on Sensors, Mesh and Ad-Hoc Communications and Networks SECON’12, Seoul, Korea, 2012, pp. 317–325.

    Google Scholar 

  43. Weirathmueller, M., Weber, T.C., Schmidt, V., McGillicuddy, G., Mayer, L., and Huff, L., Acoustic positioning and tracking in Portsmouth harbor, New Hampshire, OCEANS 2007, 2007.

    Google Scholar 

  44. Zielinski, A. and Zhou, L., Precision acoustic navigation for remotely operated vehicles (ROV), Gdansk: Polskie Towarzystwo Akustyczne, Hydroacoustics, 2005, vol. 8, pp. 255–264.

    Google Scholar 

  45. Philip, D.R.C., An evaluation of USBL and SBL acoustic systems and the optimization of methods of calibration. Part 1, The Hydrographic Journal, 2003, no. 108, pp. 18–25.

    Google Scholar 

  46. http://www.nautronix.com/product/nasdrill-rs925.

  47. http://www.km.konsberg.com.

  48. Peyronnet, J.-P., Person, R., and Rybicki, F., POSIDONIA 6000 -a new long range highly accurate ultra short base line positioning system, Proceedings of IEEE/MTS Oceans, Nice, France, vol. 3, 1998, pp. 1721–1727.

    Google Scholar 

  49. Jalving, B., Gade, K., Hagen, O.K., and Vestgard, K., A toolbox of aiding techniques for the HUGIN AUV integrated inertial navigation system, Modeling, Identification and Control, 2004, vol. 25, no. 3, pp. 173–190.

    Article  Google Scholar 

  50. Audric, M., GAPS, a new concept for USBL, MTS/IEEE Techno-Ocean’04: Bridges across the Oceans–Conference Proceedings, Kobe, Japan, 2004, vol. 2, pp. 786–788.

    Google Scholar 

  51. Opderbecke, J., At-sea Calibration of a USBL underwater vehicle positioning system, Oceans Conference Record, Halifax, NS, Canada, 1997, vol. 1, pp. 721–726.

    Google Scholar 

  52. Kebkal, K.G., Kebkal, O.G., Bannasch, R., and Yakovlev, S.G., Performance of a combined USBL positioning and communication system using S2C technology, Proceedings of the OCEANS 2012 IEEE Yeosu Conference and Exhibition, Yeosu, Korea, 2012.

    Google Scholar 

  53. Scherbatyuk, A.Ph., The AUV positioning using ranges from one transponder LBL, Proceedings OCEANS Conference, San-Diego, USA, 1995, pp. 1620–1623.

    Google Scholar 

  54. Saude, J. and Aguiar, A.P., Single beacon acoustic navigation for an AUV in the presence of unknown ocean currents, IFAC Conf. on Maneuvering and Control of Marine Craft, 2009.

    Google Scholar 

  55. McPhail, S.D. and Pebody, M., Range-only positioning of a deep-diving autonomous underwater vehicle from a surface ship, IEEE J. of Oceanic Eng., 2009, vol. 34, no. 4, pp. 669–677.

    Article  Google Scholar 

  56. Erol, M., Vieira, L.F.M., and Gerla, M., AUV-aided localization for underwater sensor networks, Proc. of the WASA, 2007, pp. 44–51.

    Google Scholar 

  57. Jouffroy, J. and Reger, J., An algebraic perspective to single-transponder underwater navigation, Proc. of IEEE Conference, Munich, Germany, 2006.

    Google Scholar 

  58. Morice, C. and Veres, S., Geometric bounding techniques for underwater localization using range-only sensors, Systems and Control, 2010

    Google Scholar 

  59. Scherbatyuk, A.Ph. and Dubrovin, F.S., Some algorithms of AUV positioning based on one moving beacon, Proceedings of the IFAC Workshop Navigation, Guidance and Control of Underwater Vehicles, FEUP, Porto, Portugal, 2012.

    Google Scholar 

  60. Fallon, M.F., Papadopoulos, G., Leonard, J.J., and Patrikalakis, N.M., Cooperative AUV navigation using a single maneuvering surface craft, Int. J. Robot. Res., 2010, vol. 29, no. 12, pp. 1461–1474.

    Article  Google Scholar 

  61. Kim, A. and Eustice, R.M., Active visual SLAM for robotic area coverage: Theory and experiment, International Journal of Robotics Research, 2015, vol. 34, nos. 4-5, pp. 457–475.

    Article  Google Scholar 

  62. Carlevaris-Bianco, N., Kaess, M., and Eustice, R.M., Generic node removal for factor-graph SLAM, IEEE Transactions on Robotics, 2014, vol. 30, no. 6, pp. 1371–1385.

    Article  Google Scholar 

  63. Newman, P., Leonard, J., and Rikoski, R., Towards constant-time SLAM on an autonomous underwater vehicle using synthetic aperture sonar, Proc. Int. Symp. Robotics Research, Sienna, Italy, 2003.

    Google Scholar 

  64. Stepanov, O.A. and Toropov, A.B., Nonlinear filtering for map-aided navigation, Gyroscopy and Navigation, 2015, no. 4, pp. 324–337, 2016, no. 1, pp. 82–89.

    Article  Google Scholar 

  65. Chandrasekhar, V. and Seah, W.K.G., Area localization scheme for underwater sensor networks, Proc. of the IEEE OCEANS Asia Pacific Conference, 2006.

    Google Scholar 

  66. Zhou, Y., He, J., Chen, K., Chen, J., and Liang, A., An area localization scheme for large scale underwater wireless sensor networks, Proc. of the IEEE International Conf. on Comm. and Mobile Computing, 2009, pp. 543–547.

    Google Scholar 

  67. Luo, H., Guo, Z., and Dong, W., LDB: Localization with directional beacons for sparse 3D underwater acoustic sensor networks, Journal of Networks, 2010, vol. 5, pp. 28–38.

    Google Scholar 

  68. Luo, H., Zhao, Y., Guo, Z., Liu, S., Chen, P., and Ni, L.M., UDB: Using directional beacons for localization in underwater sensor networks, Proc. of the ICPADS, 2008, pp. 551–558.

    Google Scholar 

  69. Lee, K.C., Ou, J.S., and Huang, M.C., Underwater acoustic localization by principal components analyses based probabilistic approach, Els. Journal of A-P. Acoust., 2009, vol. 70, pp. 1168–1174.

    Article  Google Scholar 

  70. Lee, K.C., Ou, J.S., Huang, M.C., and Fang, M.C., A novel location estimation based on pattern matching algorithm in underwater environments, Els. Journal of A-P. Acoust., 2009, vol. 70, pp. 479–483.

    Article  Google Scholar 

  71. Lee, K.C., Ou, J.S., and Wang, L.T., Underwater acoustic localization by probabilistic fingerprinting in eigenspace, Proc. of the MTS/IEEE Oceans Biloxi, 2009.

    Google Scholar 

  72. Stojanovic, M., Acoustic (Underwater) Communication. Encyclopedia of Communications, John Wiley and Sons, 2003.

    Google Scholar 

  73. Kim, A. and Eustice, R.M., Active visual SLAM for robotic area coverage: Theory and experiment, International Journal of Robotics Research, 2015, vol. 34, nos. 4–5, pp. 457–475.

    Article  Google Scholar 

  74. Carlevaris-Bianco, N., Kaess, M., and Eustice, R.M., Generic node removal for factor-graph SLAM, IEEE Transactions on Robotics, 2014, vol. 30, no. 6, pp. 1371–1385.

    Article  Google Scholar 

  75. Durrant-Whyte, H. and Bailey, T., Simultaneous Localization and Mapping: Part I, IEEE Robot. Autom. Mag., 2006, vol. 13, no. 2, pp. 99–110.

    Article  Google Scholar 

  76. Bailey, T. and Durrant-Whyte, H., Simultaneous Localization and Mapping (SLAM). Part II, IEEE Robot. Autom. Mag., 2006, vol. 13, no. 3, pp. 108–117.

    Article  Google Scholar 

  77. Li, J., Eustice, R.M., and Johnson-Roberson, M., High-level visual features for underwater place recognition, Proceedings of the IEEE International Conference on Robotics and Automation, Seattle, WA, USA, 2015, pp. 3652–3659.

    Google Scholar 

  78. Yoerger, D.R., Bradley, A.M., Walden, B.B., Singh, H., and Bachmayer, R., Surveying a subsea lava flow using the Autonomous Benthic Explorer (ABE), International Journal of Systems Science, 1998, vol. 29, no. 4, pp. 1031–1044.

    Article  MATH  Google Scholar 

  79. Ghabcheloo, R., Pascoal, A., Silvestre, C., and Kaminer, I., Nonlinear coordinated path following control of multiple wheeled robots with bidirectional communication constraints, International Journal of adaptive control and signal processing, March-April, 2005, vol. 21, no. 2–3, pp. 133–157.; no. 1–2.

    MATH  Google Scholar 

  80. Soares, J.M., Aguiar, A.P., Pascoal, A.M., and Martinoli, A., Joint ASV/AUV range-based formation control: Theory and experimental results, Robotics and Automation (ICRA), 2013 IEEE International Conference, 6-10 May 2013, pp. 5579–5585.

    Google Scholar 

  81. Dubrovin, F.S. and Scherbatyuk, A.F., On the method of estimating the performance accuracy of single-beacon mobile navigation system of underwater vehicle from a surface vehicle equipped with DGPS, Materialy 6-i Vserossiiskoi nauchno-tekhnicheskoi konferentsii “Tekhnicheskie problemy osvoeniya Mirovogo okeana” (Proceedings of the 6th Scientific and Technical Conference “Technical Problems of the World Ocean Exploration”), Vladivostok, 2015, pp. 386–390.

    Google Scholar 

  82. Maleev, P.I., Problems of designing AUV navigation aids and possible solutions, Navigatsiya i Gidrografiya, 2015, no. 39, pp. 7–11.

    Google Scholar 

  83. Beloglazov, I.N., Dzhandzhgava, G.I., and Chigin, G.P., Osnovy navigatsii po gidrofizicheskim polyam (Fundamentals of Navigation Based on Hydrophysical Fields), Moscow: Nauka, 1985.

    Google Scholar 

  84. Maleev, P.I. and Khlypalo, Yu.G., Potential development trends for shipborne navigation systems aiding, Navigatsiya i Gidrografiya, 2016, no. 43, pp. 7–12.

    Google Scholar 

  85. Bobkov, V.A. and Mashentsev, V.Yu., Underwater robot navigation by stereoimages, Mekhatronika, Avtomatizatsiya, Upravlenie, 2016, vol. 17, no. 2, pp. 101–109.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. G. Kebkal.

Additional information

Original Russian Text © K.G. Kebkal, A.I. Mashoshin, 2016, published in Giroskopiya i Navigatsiya, 2016, No. 3, pp. 115–130.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kebkal, K.G., Mashoshin, A.I. AUV acoustic positioning methods. Gyroscopy Navig. 8, 80–89 (2017). https://doi.org/10.1134/S2075108717010059

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075108717010059

Navigation