Skip to main content
Log in

Orientation and stabilization systems of space vehicles for different purposes: Lines of development

  • Published:
Gyroscopy and Navigation Aims and scope Submit manuscript

Abstract

The requirements for orientation and stabilization systems of space vehicles are formulated. The state-of-the-art Russian star trackers, inertial sensors, and onboard computer systems intended for orientation and stabilization systems are considered. The problems and prospects for their further development are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brovkin, A.G., Burdygov, B.G., Gordiiko, S.V. et al., Bortovye sistemy upravleniya kosmicheskimi apparatami: Uchebnoe posobie (Spacecraft Motion Control Systems: Textbook), A.S. Syrov, Ed., Moscow: MAI-PRINT, 2010.

  2. Proektirovanie i ispytanie bortovykh sistem upravleniia (Designing and Testing of Spacecraft Motion Control Systems), A.S. Syrov, Ed., Moscow: MAI-PRINT, 2011.

    Google Scholar 

  3. Lobanov, V.S., et al., Formation of requirements for advanced stellar inertial control systems of astrophysical spacecraft, Materialy 28 konferentsii pamyati vydayushchegosya konstruktora giroskopicheskikh priborov N.N. Ostryakova (Proceedings of the 28th Conference in Memory of N.N. Ostryakov), St. Petersburg: Elektropribor, 2012, pp. 20–21.

    Google Scholar 

  4. Lobanov, V.S., Tarasenko, N.V., Shul’ga, D.N., Zboroshenko, V.N., and Belyaev, B.B., Advanced astroinertial control systems for astrophysical space vehicles, Giroskopiya i Navigatsiya, 2013, no. 3, pp. 72–84.

    Google Scholar 

  5. International Project Radioastron. The website of the Russian Federal Space Agency. http://www.federalspace.ru/main.php?id=363.

  6. Avanesov, G.A., Belinskaya, E.V., Voronkov, S.V., Stroilov, N.A., Katasonov, I.Yu., Kudelin, M.I., and Nikitin, A.V., A system of guidance sensors in the guidance loop of the space telescope in the SPEKTR-UF project, Sb. trudov Tret’ei Vserossiiskoi nauchno-tekhnicheskoi konferentsii “Sovremennye problemy orientatsii i navigatsii kosmicheskikh apparatov” (Proceedings of the 3rd All-Russian Scientific and Technical Conference “Modern Problems of Orientation and Navigation of Space Vehicles”, IKI RAN, 2013, pp. 38–46.

    Google Scholar 

  7. http://www.khrunichev.ru/main.php?id=70

  8. http://ru.wikipedia.org/wiki/Экспресс_(спутниковая платформа)

  9. Primenenie mikrosputnikov udeshevit kosmicheskie programmyi (Using Microsatellites Will Make Space Programs Cheaper), http://www.interfax.by /article/1123001.

  10. Sevast’yanov, N.N. et al., Analyzing the feasibility of creating small Earth remote sensing spacecraft, Trudy MFTI, 2009, vol. 1, no. 3, pp. 14–22.

    MathSciNet  Google Scholar 

  11. http://www.vniiem.ru.

  12. Ivlev, N.A. et al., Development of an orientation and stabilization system for microsatellites, Sb. trudov X konferentsii molodykh uchenykh “Fundamental’nye i prikladnye kosmicheskie issledovaniya” (Proc. X Conference of Young Scientists “Fundamental and Applied Space Research”), Ìoscow: IKI RAN, 2014, pp. 43–60.

    Google Scholar 

  13. http://www.sputnix.ru

  14. Dyatlov, S.A. and Bessonov, R.B., A review of star trackers for spacecraft orientation, Sb. trudov Vserossiiskoi nauchno-tekhn. konferentsii “Sovremennye problemy opredeleniya orientatsii i navigatsii kosmicheskikh apparatov” (Proc. All-Russian Scientific and Technical Conference “Modern problems of determining spacecraft orientation and navigation”), Moscow: IKI RAN, 2009, pp. 11–31.

    Google Scholar 

  15. Kotov, M.N., Krumkach, V.I., Limanovskii, A.I., Tkachenko, A.N., and Shimanovich, A.V., Star trackers based on CMOS photodetectors, Sb. trudov Vserossiiskoi nauchno-tekhn. konferentsii “Sovremennye problemy opredeleniya orientatsii i navigatsii kosmicheskikh apparatov” (Proc. All-Russian Scientific and Technical Conference “Modern problems of determining spacecraft orientation and navigation”), Moscow: IKI RAN, 2012, pp. 14–15.

    Google Scholar 

  16. http://www.peleng.by

  17. Avanesov, G.A., Bessonov, R.V., and Forsh, A.A., Operating experience and prospects for development of Russian devices for spacecraft orientation by stars, Sb. tezisov Vtoroi mezhdunarodnoi nauchno-tekhnicheskoi konferentsii Aktual’nye problemy sozdaniya kosmicheskikh sistem distantsionnogo zondirovaniya Zemli. (Abstracts of the Second International Scientific Conference Problems of the development of remote sensing space systems), Ìoscow: VNIIEM, 2014, pp. 41–42.

    Google Scholar 

  18. Fedoseev, V.I., Problems of improvement of modern Russian devices for spacecraft orientation by the stars. Sb. tezisov Vtoroi mezhdunarodnoi nauchno-tekhnicheskoi konferentsii Aktual’nye problemy sozdaniya kosmicheskikh sistem distantsionnogo zondirovaniya Zemli. (Abstracts of the Second International Scientific Conference Problems of the development of remote sensing space systems), Ìoscow: VNIIEM, 2014, pp. 38–40.

    Google Scholar 

  19. Dzhashitov, V.E., Pankratov, V.M., and Golikov A.V. Obshchaya i prikladnaya teoriya giroskopov (General and Applied Theory of Gyroscopes), Peshekhonov, V.G., Ed., St. Petersburg: Elektropribor, 2010.

  20. Gorelov Yu.N., Kurganskya, L.V., Manturov A.I. et al., On the problem of optimizing the programs for attitude control of remote sensing spacecraft, Giroskopiya i Navigatsiya, 2014, no. 1(84), pp. 81–97.

    Google Scholar 

  21. http://www.tsenki.com/production_technologies/hiroscopic

  22. Pylaev, Yu.K., Gubanov, A.G., Yefremov, M.V., Kruglov, S.A., and Romanov, A.V., Fiber-optic gyroscope as space-related applications: Development, production and operating experience, 20th St. Petersburg Int. Conf. on Integrated Navigation Systems, St. Petersburg: Elektropribor, 2013, pp. 50–58.

    Google Scholar 

  23. http://www.fizoptika.com/

  24. http://npp-antares.ru/productions.html

  25. http://www.optolink.ru/ru/

  26. Listvin V. and Logozinskii V., Miniature fiber-optic rotation sensor, Elektronika: NTB, 2006, no. 8, pp. 4–8.

    Google Scholar 

  27. Korkishko, Yu.N., Fedorov, V.A., Prilutskiy, V.E., Ponomarev, V.G., Morev, I.V., Skripnikov, S.F., Khmelevskaya, M.I., Buravlev, A.S., Kostritskiy, S.M., Zuev, A.I., and Varnakov, V.K., Strapdown inertial navigation systems based on fiber optic gyroscopes, 20th St. Petersburg Int. Conf. on Integrated Navigation Systems, St. Petersburg: Elektropribor, 2013, pp. 97–105.

    Google Scholar 

  28. Kross, Zh., Why are the technologies of fiber-optic gyros the best answer to the needs of missions aimed at the Earth observation? Sb. tezisov Vtoroi mezhdunarodnoi nauchno-tekhnicheskoi konferentsii Aktual’nye problemy sozdaniya kosmicheskikh sistem distantsionnogo zondirovaniya Zemli. (Abstracts of the Second International Scientific Conference Problems of the development of remote sensing space systems), Ìoscow: VNIIEM, 2014, pp. 42–44.

    Google Scholar 

  29. http://www.ixsea.com

  30. Rozelle, D. M., The Hemispherical Resonator Gyro: From Wineglass to the Planets. Northrop Grumman Co, Navigation Systems Division. White paper. AAS 09176.

  31. http://www.northropgrumman.com

  32. http://www.inertech.ru.

  33. Bodunov, B.P., Bodunov, S.B., Vladimirov, V.A., Igonin, A.N. and Kostenok, N.A., Dual-mode HRG for space application, 20th St. Petersburg Int. Conf. on Integrated Navigation Systems, St. Petersburg: Elektropribor, 2013, pp. 173–176.

    Google Scholar 

  34. Sysoeva, S., The key segments of the MEMS-component market. Inertial systems–from low-end to highend segments, Komponenty i tekhnologii, 2010, no 5, pp. 22–30.

    Google Scholar 

  35. Sysoeva, S., Trends of high-end inertial MEMS-sensors. New levels of characteristics and designs, Komponenty i tekhnologii, 2014, no. 6, pp. 40–46.

    Google Scholar 

  36. http://www.niifi.ru

  37. http://www.submicron.ru

  38. http://www.argon.ru

  39. http://www.techcom.aero/cvm.php

  40. http://www.module.ru

  41. Osipenko, P.N., Microprocessors and controllers of NIISI RAN for aerospace applications, Sb. dokladov konferentsii “Razrabotka otkazoustoichivykh mikroprotsessornykh sistem upravleniya” (Proc. of Conference “Development of Fault-Tolerant Microprocessor Control Systems”, Moscow, 2012.

    Google Scholar 

  42. Osipenko, P.N., Products of Scientific Research Institute of System Analysis for Aerospace Applications, Sb. trudov nauchno-tekhn. seminara “Nauchnye eksperimenty na malykh kosmicheskikh apparatakh: apparatura, sbor dannykh i upravlenie, elektronnaya komponentnaya baza” (Proc. of Scientific and Technical Seminar “Scientific experiments on small spacecraft: equipment, data acquisition and control, and electronic hardware”), Moscow: IKI RAN, 2013, pp. 139–148.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Lobanov.

Additional information

Published in Giroskopiya i Navigatsiya, 2015, No. 2, pp. 18–29.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lobanov, V.S., Tarasenko, N.V. & Zboroshenko, V.N. Orientation and stabilization systems of space vehicles for different purposes: Lines of development. Gyroscopy Navig. 7, 50–57 (2016). https://doi.org/10.1134/S2075108716010090

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075108716010090

Keywords

Navigation