Skip to main content
Log in

Navigation solution for a geostationary satellite based on its dynamic equations and occasional GNSS measurements

  • Published:
Gyroscopy and Navigation Aims and scope Submit manuscript

Abstract

The paper offers solution to the problem of geostationary spacecraft navigation by navigation satellite signal measurements using nonlinear dynamic equations, which include perturbing factors such as non-sphericity of the gravitational field of the Earth, gravitational attraction of the Moon and the Sun, and direct solar radiation pressure. This solution uses the iterative Kalman filter based on UD-decomposition and is focused on the onboard implementation with limited computing resources. The estimates of current coordinates and velocity components obtained with the Kalman filter are taken into account when integrating nonlinear equations of a spacecraft motion up to the next solution time moment. With undetermined solar radiation pressure coefficient, the proposed solution proved efficient in terms of accuracy requirements for the spaceborne satellite navigation receiver. The tests were conducted using a GPS signal simulator and a receiver.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mikhaylov N.V., Mikhaylov, V.F., and Vasil’yev, M.V., Autonomous spacecraft navigation using GPS, Giroskopiya i Navigatsiya, 2008, no. 1, pp. 3–21.

    Google Scholar 

  2. Mikhaylov, N.V. and Chistyakov, V.V. Priemniki sputnikovoy navigatsii kosmicheskogo bazirovaniya: Arkhitektura i pervichnaya obrabotka signalov (Space-Based GNSS Receivers: Architecture and Primary Signal Processing), Voronezh: Nauchnaya kniga, 2014

    Google Scholar 

  3. Makhnenko, Yu.Yu., Economically effective technologies of navigation of geostationary satellites, Doctoral (Tech.) dissertation, Moskow, 2008.

    Google Scholar 

  4. Chernyavskii, G.M. and Bartenev, B.A., Orbity sputnikov svyazi (Orbits of communication satellites), Moscow: Svyaz’, 1978.

    Google Scholar 

  5. Bartenev, V.A., Malyshev, V.A., and Chernyavskii, G.M., Upravleniye orbitoy statsionarnogo sputnika (Control of stationary satellite control), Moscow: Mashinostroenie, 1984.

    Google Scholar 

  6. Lebedev, A.A., Bartenev, V.A., and Reshetnev, M.F., Upravleniye i navigatsiya ISZ na okolokrugovykh orbitakh (Control and navigation of Earth artificial satellites at near-circular orbits), Moscow: Mashinostroenie, 1988.

    Google Scholar 

  7. Montenbruck, O. and Gill, E., Satellite Orbits, Models, Methods and Applications, Berlin: Springer, 2000.

    Book  MATH  Google Scholar 

  8. Makhnenko, Yu. Yu., Selection of motion model for navigation of geostationary satellite, Issledovano v Rossii, http://www.sci-journal.ru/articles/2008/092.pdf.

  9. Global Positioning System: Theory and Applications, Parkinson, B.W., Spliker Jr, J.J., Eds., vol. I, II, 1996.

    Google Scholar 

  10. Coulson, P. and Srinivasan, B.J., New Techniques for Orbit Determination of Geosynchronous, Geosynchronous-Transfer, and Other High-Altitude Earth Orbiters, BEACON eSpace at Jet Propulsion Laboratory. 1997. http://hdl.handle.net/2014/22478

    Google Scholar 

  11. Mikhailov, N.V. and Vasil’ev, M.V., Autonomous satellite orbit determination using spaceborne GNSS receivers, Gyroscopy and Navigation, 2011, no. 1, pp. 1–9.

    Google Scholar 

  12. Islentev, I.E., Grechkoseev, A.K., and Kokorin, V.I., RF patent 2325667 C1, MPK, G01S 5/12 (2006.01), A method to determine the spacecraft state vector by the signals of space navigation systems, 27.05.2008 Byul. 15.

  13. Tapley, V.D., Schutz, B.E., and Born, G.H., Statistical Orbit Determination, Elsevier Academic Press, 2004.

    Google Scholar 

  14. Mikhaylov, N.V. and Mikhaylov, V.F., A method to determine position and velocity of geostationary spacecraft using the measurements of satellite navigation systems, Uspekhi Sovremennoy Radioelektroniki, 2013, pp. 113–121.

    Google Scholar 

  15. Xu, G., Orbits, Berlin: Springer-Verlag, 2008.

    MATH  Google Scholar 

  16. Dmitriyev, S.P., Vysokotochnaya morskaya navigatsiya (High-precision marine navigation), St. Petersburg: Sudostroyeniye, 1991.

    Google Scholar 

  17. Stepanov, O.A., Primeneniye teorii nelineynoy fil’tratsii v zadachakh obrabotki navigatsionnoy informatsii (Applications of Nonlinear Filtering Theory to Navigation Data Processing), St. Petersburg: Elektropribor, 2003, 3rd edition.

    Google Scholar 

  18. Rivkin, S.S., Ivanovskii, R.Yu., and Kostrov, A.V., Statisticheskaya optimizatsiya navigatsionnykh sistem (Statistical optimization of navigation systems), Leningrad: Sudostroyeniye, 1976.

    Google Scholar 

  19. Bauer, F.H. et al., The GPS Space Service Volume, Proceedings of the 19th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2006), Sept. 26–29, 2006, pp. 2503–2514.

    Google Scholar 

  20. Miller, J.J. and Moreau, M.C., Enabling a Fully Interoperable GNSS Space Service Volume, Presentations from 7th Meeting of the International Committee on Global Navigation Satellite Systems (ICG-7), Beijing, China, November 2012. http://www.gps.gov/multime-dia/presentations/2012/11/ICG/miller.pdf.

    Google Scholar 

  21. Dmitriev, S.P., Stepanov, O.A., and Pelevin, A.E., Motion control and non-invariant algorithms using the vehicle dynamics for inertial-satellite integrated navigation, 7th St. Petersburg International Conference on Integrated Navigation Systems, 29–31 May, 2000 St. Petersburg, Russia.

    Google Scholar 

  22. Stepanov, O.A., Osnovy teorii otsenivaniya s prilozheniyami k zadacham obrabotki navigatsionnoi informatsii (Foundations of Estimation Theory with Applications to Navigation Data Processing), Part 2. Introduction to Filtering Theory, St. Petersburg: Elektropribor, 2012.

    Google Scholar 

  23. Brown, R.G. and Hwang, P.Y.C., Introduction to Random Signals and Applied Kalman Filtering, New York: Wiley, 1992, 2nd edition.

    MATH  Google Scholar 

  24. Mikhailov, N.V., Avtonomanya navigatsiya kosmicheskikh apparatov pri pomotschi sputnikovykh radionavigatsionnykh sistem (Spacecraft Autonomous Navigation Using Satellite Radionavigation Systems), St. Petersburg, Politekhnika, 2014.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Koshaev.

Additional information

Published in Giroskopiya i Navigatsiya, 2014, No. 4, pp. 16–33.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mikhaylov, N.V., Koshaev, D.A. Navigation solution for a geostationary satellite based on its dynamic equations and occasional GNSS measurements. Gyroscopy Navig. 6, 87–100 (2015). https://doi.org/10.1134/S207510871502008X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S207510871502008X

Keywords

Navigation