Skip to main content
Log in

Layered Double Hydroxides as Promising Adsorbents for Purification of Radioactive Polluted Water: A Review

  • Published:
Theoretical and Experimental Chemistry Aims and scope

A critical review of the last decade’s literature on the synthesis, modification, and properties of layered double hydroxides (LDHs) regarding their use as sorbents for the removal of radionuclides from aquatic environments has been conducted. The evaluation of their adsorption capacity against U(VI), 137Cs, 90Sr, 60Co, 152+154Eu(III), and 241Am has been performed on the basis of the analysis of the effect of the LDH preparation method, the nature of the metal ions in the material layers and compounds intercalated into their interlayer space. It is shown that magnetic composites of LDHs chelated forms have significant advantages for a practical use for the removal of both cationic and, especially, anionic forms of uranium(VI) from aquatic environments. Zn,Al-LDHs intercalated with the inorganic compounds, namely hexacyanoferrate(II) anions and copper(II) hexacyanoferrate, are found to be the most effective for the sorption extraction of 137Cs and 90Sr radionuclides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  1. Yu. G. Tyutyunnyk, Uranus Technogenesis [In Ukrainian], Chernobyl, ISTC “Shelter” NAS of Ukraine (1996).

  2. M. I. Kuzmenko, Radionuclide Anomaly [In Ukrainian], Akademperiodyka, Kyiv, (2013).

    Book  Google Scholar 

  3. The World Nuclear Waste Report 2019, February 05, 2020 (Council Directive 2011/70/EURATOM on radioactive waste and spent fuel), Brussels.

  4. M. I. Panasyuk, N. B. Sosonna, I. O. Kovalenko, et al., Nuclear energy and Environment [In Ukrainian], No. 3, 82-89 (2019).

  5. WHO. Guidelines For Drinking-Water Quality, 4th edition, incorporating the 2nd addendum. Geneva, Switzerland (2021).

  6. Yu. V. Kuznetsov, V. N. Shchebetkovsky, and A. G. Trusov, Fundamentals of Water Purification from Radioactive Pollution [In Rusian], Atomizdat, Moscow (1974).

    Google Scholar 

  7. A. S. Nikiforov, V. V. Kulichenko, and M. I. Zhikharev, Neutralization of Liquid Radioactive Waste [In Rusian], Energoatomizdat, Moscow (1985).

    Google Scholar 

  8. R.O. Abdel Rahman, H. A. Ibrahium, and Y.-T. Hung, Water, No. 3, 551-565 (2011).

  9. D. Rana, T. Matsuura, M. A. Kassim, et al., Desalination, 321, 77-92 (2013), https://doi.org/10.1016/j.desal.2012.11.007.

    Article  CAS  Google Scholar 

  10. K. Goh, T. Lim, and Zh. Dong, Water Res., 42, 1343-1368 (2008), https://doi.org/10.1016/j.watres.2007.10.043.

    Article  CAS  Google Scholar 

  11. S. M. Auerbach, K. A. Carrado, and P. K. Dutta (Eds.), Handbook of Layered Materials, Marcel Dekker Inc., New York (2004).

    Google Scholar 

  12. X. Cai, X. Shen, L. Ma, et al., Chem. Eng. J., 268, 251-259 (2015), https://doi.org/10.1016/j.cej.2015.01.072.

    Article  CAS  Google Scholar 

  13. K. Ladewig, Z. P. Xu, and G. Q. M. Lu, Expert Opin. Drug Deliv., 6, 907-922 (2009), https://doi.org/10.1517/17425240903130585.

    Article  CAS  Google Scholar 

  14. C. Li, M. Wei, D. G. Evans, and X. Duan, Small, 10, 4469-4486 (2014), https://doi.org/10.1002/smll.201401464.

    Article  CAS  Google Scholar 

  15. G. Mishra, B. Dash, and S. Pandey, Appl. Clay Sci., 153, 172-186 (2018), https://doi.org/10.1016/j.clay.2017.12.021.

    Article  CAS  Google Scholar 

  16. P. Gu, S. Zhang, X. Li, et al., Environ. Pollut., 240, 493-505 (2018), 10.10167j.envpol.2018.04.136.

  17. A. I. Khan and D. O’Hare, J. Mater. Chem., 12, 3191-3198 (2002).

    Article  CAS  Google Scholar 

  18. M. V. Bukhtiyarova, J. Solid State Chem., 269, 494-506 (2019).

    Article  CAS  Google Scholar 

  19. M. I. Carretero, Appl. Clay Sci., 21, 155-163 (2002), https://doi.org/10.1016/S0169-1317(01)00085-0.

    Article  CAS  Google Scholar 

  20. S. Miyata, Clays Clay Miner., 23, 369-375 (1975).

    Article  CAS  Google Scholar 

  21. L. El Gaini, M. Lakraimi, E. Sebbar, et al., J. Hazard Mater., 161, 627-632 (2009).

    Article  Google Scholar 

  22. Q. Wang and D. O’Hare, Chem. Rev., 112, 4124-4155 (2012).

    Article  CAS  Google Scholar 

  23. A. Seron and F. Delorme, J. Phys. Chem. Solids, 69, 1088-1090 (2008).

    Article  CAS  Google Scholar 

  24. P. Wang, L. Yin, X. Wang, et al., J. Environ. Manag., 217, 468-477 (2018), https://doi.org/10.1016/j.jenvman.2018.03.112.

    Article  CAS  Google Scholar 

  25. S. Ma, L. Huang, L. Ma, S. M. Islam, et al., J. Am. Chem. Soc., 137, No. 10, 3670-3677 (2015), https://doi.org/10.1021/jacs.5b00762.

    Article  CAS  Google Scholar 

  26. G. N. Pshinko, A. A. Kosorukov, L. N. Puzyrnaya, et al., Radiochemistry, 53, No. 3, 303-307 (2011).

    Article  CAS  Google Scholar 

  27. Y. Zou, X. Wang, F. Wu, et al., ACS Sustain. Chem. Eng., 5, 1173-1185 (2017), https://doi.org/10.1021/acssuschemeng.6b02550.

    Article  CAS  Google Scholar 

  28. Y. Zou, Y. Liu, X. Wang, et al., ACS Sustain. Chem. Eng., 5, No. 4, 3583-3595 (2017), https://doi.org/10.1021/acssuschemeng.7b00439.

    Article  CAS  Google Scholar 

  29. B. Chen, H. Xia, L. Mende, et al., Adv. Mater. Interfaces, 9, No. 22, 2200373 (2022), https://doi.org/10.1002/admi.202200373.

    Article  CAS  Google Scholar 

  30. X. Zhang, L. Ji, J. Wang, et al., Colloids Surf. A., 414, 220-227 (2012).

    Article  CAS  Google Scholar 

  31. S. Li, H. Bai, J. Wang, et al., Chem. Eng. J., 193, 372-380 (2012).

    Article  Google Scholar 

  32. X. Zhang, J. Wang, R. Li, et al., Ind. Eng. Chem. Res., 52, 10152-10159 (2013).

    Article  CAS  Google Scholar 

  33. H. Chen, Z. Chen, G. Zhao, et al., J. Hazard Mater., 347, 67-77 (2018), https://doi.org/10.1016/j.jhazmat.2017.12.062.

    Article  CAS  Google Scholar 

  34. W. Yao, X. Wang, Y. Liang, et al., Chem.Eng. J., 332, 775-786 (2018), https://doi.org/10.1016/j.cej.2017.09.011.

    Article  CAS  Google Scholar 

  35. X. Wang, S. Yu, Y. Wu, et al., Chem. Eng. J., 342, 321-330 (2018), https://doi.org/10.1016/j.cej.2018.02.102.

    Article  CAS  Google Scholar 

  36. L. Yin, Y. Hu, R. Ma, et al., Chem. Eng. J., 359, 1550-1562 (2019), https://doi.org/10.1016/j.cej.2018.11.017.

    Article  CAS  Google Scholar 

  37. L. Tan, Y. Wang, Q. Liu, et al., Chem. Eng. J., 259, 752-760 (2015), 10.10167j.cej.2014.08.015.

  38. S. Yu, J. Wang, S. Song, et al., Sci. China Chem., 6, 415-422 (2017), https://doi.org/10.1007/s11426-016-0420-8.

    Article  CAS  Google Scholar 

  39. H. Chaudhuri and Y. Yun, Sep. Purif. Technol., 297, 121518 (2022), https://doi.org/10.1016/j.seppur.2022.121518.

    Article  CAS  Google Scholar 

  40. C. Zhong, S. Su, L. Xu, et al., Colloids Surf. A., 562, 329-335 (2019), https://doi.org/10.1016/j.colsurfa.2018.11.029.

    Article  CAS  Google Scholar 

  41. D. Yang, S. Song, Y. Zou, et al., Chem. Eng. J., 323, 143-152 (2017), https://doi.org/10.1016/j.cej.2017.03.158.

    Article  CAS  Google Scholar 

  42. D. Yang, X. Wang, N. Wang, et al., J. Clean. Prod., 172, 2033-2044 (2017), https://doi.org/10.1016/j.jclepro.2017.11.219.

    Article  CAS  Google Scholar 

  43. Y. Zou, P. Wang, W. Yao, et al., Chem. Eng. J., 330, 573-584 (2017), https://doi.org/10.1016/j.cej.2017.07.135.

    Article  CAS  Google Scholar 

  44. A. A. Kosorukov, G. N. Pshinko, L. N. Puzyrnaya, et al., J. Water Chem. Technol., 35, No. 3, 104-111 (2013), https://doi.org/10.3103/S1063455X13030028.

    Article  Google Scholar 

  45. G. N. Pshinko, A. A. Kosorukov, L. N. Puzyrnaya, et al., Radiochemistry, 55, No. 6, 601-604 (2013).

    Article  CAS  Google Scholar 

  46. G. N. Pshinko, L. N. Puzyrnaya, A. A. Kosorukov, et al., J. Water Chem. Technol., 39, No. 3, 138-142 (2017).

    Article  Google Scholar 

  47. G. N. Pshinko, L. N. Puzyrnaya, B. P. Yatsik, et al., Radiochemistry, 57, No. 6, 526-530 (2015).

    Article  Google Scholar 

  48. T. G. Timoshenko, A. A. Kosorukov, G. N. Pshinko, et al., J. Water Chem. Technol., 31, No. 4, 250-255 (2009).

    Article  Google Scholar 

  49. J. Tu, X. Peng, X. Wang, et al., Sci. Total Environ., 677, 556-563 (2019).

    Article  CAS  Google Scholar 

  50. S. Song, L. Yin, X. Wang, et al., Chem. Eng. J., 338, 579-590 (2018).

    Article  CAS  Google Scholar 

  51. L. Xie, Y. Zhong, R. Xiang, et al., Chem. Eng. J., 328, 574-584 (2017).

    Article  CAS  Google Scholar 

  52. Q. Tian and K. Sasaki, Sci. Total Environ., 695, 133799 (2019), https://doi.org/10.1016/j.scitotenv.2019.133799.

    Article  CAS  Google Scholar 

  53. G. N. Pshinko, L. N. Puzyrnaya, S. A. Kobets, et al., Radiochemistry, 57, No. 6, 616-620 (2015).

    Article  CAS  Google Scholar 

  54. G. N. Pshinko, L. N. Puzyrnaya, V. S. Shunkov, et al., Radiochemistry, 60, No. 4, 395-399 (2018).

    Article  CAS  Google Scholar 

  55. T. Kameda, T. Shinmyou, and T. Yoshioka, RSC Adv., 5, 79447-79455 (2015), https://doi.org/10.1039/C5RA12807B.

    Article  CAS  Google Scholar 

  56. T. Kameda, T. Shinmyou, and T. Yoshioka, RSC Adv., 4, 45995-46001 (2014), https://doi.org/10.1039/C4RA06795A.

    Article  CAS  Google Scholar 

  57. T. Kameda, T. Shinmyou, and T. Yoshioka, Nanotechnology, 978, 41-46 (2015).

    Google Scholar 

  58. T. Kameda, T. Shinmyou, and T. Yoshioka, Mater. Chem. Phys., 177, 8-11 (2016), https://doi.org/10.1016/j.matchemphys.2016.04.015.

    Article  CAS  Google Scholar 

  59. P. Koilraj, Y. Kamura, and K. Sasaki, ACS Sust. Chem. Eng., 5, No. 10, 9053-9064 (2017), https://doi.org/10.1021/acssuschemeng.7b01979.

    Article  CAS  Google Scholar 

  60. B. Guo, Y. Kamura, P. Koilraj, et al., Environ. Res., 187, 109712 (2020), https://doi.org/10.1016/j.envres.2020.109712.

    Article  CAS  Google Scholar 

  61. N. R. Palapa, T. Taher, M. Said, et al., Sci. Technol. Indonesia, 3, No. 4, 189-194 (2018).

    Article  Google Scholar 

  62. L. N. Puzyrnaya, B. P. Yatsyk, G. N. Pshinko, et al., J. Water Chem. Technol., 38, 200-206 (2016), https://doi.org/10.3103/S1063455X16040032.

    Article  Google Scholar 

  63. J. Shou, C. Jiang, F. Wang, et al., J. Mol. Liq., 207, 216-223 (2015), https://doi.org/10.1016/j.molliq.2015.03.047.

    Article  CAS  Google Scholar 

  64. P. Koilraj, R. Kalusulingam, and K. Sasaki, Chem. Eng. J., 374, 359-369 (2019), https://doi.org/10.1016/j.cej.2019.05.166.

    Article  CAS  Google Scholar 

  65. M. R. Mahmoud and H. H. Someda, J. Radioanal. Nucl. Chem., 292, 1391-1400 (2012), https://doi.org/10.1007/s10967-012-1715-0.

    Article  CAS  Google Scholar 

  66. P. Zong, M. Shao, D. Cao, et al., Environ. Res., 196, 110375 (2021), https://doi.org/10.1016/j.envres.2020.110375.

    Article  CAS  Google Scholar 

  67. J. M. Phillippi, V. A. Loganathan, M. J. McIndoe, et al., Soil Sci. Soc. Am. J., 71, 329-335 (2007), https://doi.org/10.2136/sssaj2006.0159.

    Article  CAS  Google Scholar 

  68. S. A. Kobets, G. N. Pshinko, and L. N. Puzyrnaya, J. Water Chem. Technol., 34, No. 6, 277-283 (2012), https://doi.org/10.3103/S1063455X12060057.

    Article  Google Scholar 

  69. S. A. Kulyukhin, E. P. Krasavina, I. V. Gredina, et al., Radiochemistry, 51, No. 6, 616-621 (2009).

    Article  CAS  Google Scholar 

  70. S. A. Kulyukhin, E. P. Krasavina, I. A. Rumer, et al., Radiochemistry, 53, No. 5, 504-509 (2011).

    Article  CAS  Google Scholar 

  71. S. A. Kulyukhin, E. P. Krasavina, I. A. Rumer, et al., Radiochemistry, 54, No. 3, 253-257 (2012).

    Article  CAS  Google Scholar 

  72. S. A. Kulyukhin, N. A. Konovalova, M. P. Gorbacheva, et al., Radiochemistry, 55, No. 3, 298-304 (2013).

    Article  CAS  Google Scholar 

  73. S. A. Kulyukhin, E. P. Krasavina, and I. A. Rumer, Radiochemistry, 57, No. 1, 69-72 (2015).

    Article  CAS  Google Scholar 

  74. S. A. Kulyukhin, E. P. Krasavina, and A. V. Gordeyev, Chim. Tehnologiya, 20, No. 8, 374-379 (2019).

    Google Scholar 

  75. M. A. Keimyrov, L. N. Puzyrnaya, G. N. Pshynko, et al., Yaderna Energetyka ta Dovkillya, 1, No. 7, 59-64 (2016).

    Google Scholar 

  76. D. Yang, X. Wang, N. Wang, et al., J. Clean. Prod., 172, 2033-2044 (2018) https://doi.org/10.1016/j.jclepro.2017.11.219.

  77. K. Zhu, S. Lu, Y. Gao, et al., Appl. Surf. Sci., 396, 1726-1735 (2017).

    Article  CAS  Google Scholar 

  78. G. Huang, L. Shao, X. He, and L. Jiang, J. Radioanal. Nucl. Chem., No. 3, 847-854 (2019), https://doi.org/10.1007/s10967-018-06402-8.

  79. L. Xu, T. Zheng, S. Yang, et al., Environ. Sci. Technol., 50, 3852-3859 (2016), https://doi.org/10.1021/acs.est.5b05932.

    Article  CAS  Google Scholar 

  80. K. Chang, Y. Sun, F. Ye, et al., Chem. Eng. J., 325, 665-671 (2017), https://doi.org/10.1016/j.cej.2017.05.122.

    Article  CAS  Google Scholar 

  81. G. N. Pshinko, L. N. Puzyrnaya, A. A. Kosorukov, et al., J. Water Chem. Technol., 42, No. 2, 79-87 (2020).

    Article  Google Scholar 

  82. G. N. Pshinko, L. N. Puzyrnaya, V. S. Shunkov, et al., J. Water Chem. Technol., 42, No. 5, 365-372 (2020), https://doi.org/10.3103/S1063455X20050094.

    Article  Google Scholar 

  83. G. N. Pshinko, L. N. Puzyrnaya, A. A. Kosorukov, et al., Radiochemistry, 63, No. 3, 325-333 (2021), https://doi.org/10.1134/S1066362221030103.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. G. Kobylinska.

Additional information

Translated from Teoretychna ta Eksperymentalna Khimiya, Vol. 58, No. 4, pp. 201-218, July-August, 2022.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kobylinska, N.G., Puzyrnaya, L.M. & Pshinko, G.M. Layered Double Hydroxides as Promising Adsorbents for Purification of Radioactive Polluted Water: A Review. Theor Exp Chem 58, 221–239 (2022). https://doi.org/10.1007/s11237-022-09739-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11237-022-09739-0

Keywords

Navigation