Skip to main content
Log in

Corrosion Dynamics of Low Carbon Steel in Salt Spray Environment

  • PHYSICOCHEMICAL PROBLEMS OF MATERIALS PROTECTION
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

In order to study the corrosion dynamics of low carbon steel in neutral salt spray environment, the low carbon steel samples were carried out neutral salt spray corrosion test (SST). The corrosive behavior of low carbon steel was examined by scan electron microscopy, electrochemical impedance spectra, and potentiodynamic polarization, and the salt spray corrosion dynamics laws of low carbon steel were discussed. SST results showed that as the corrosion progresses, the rust layers will become dense, forming a “scab” structure, and forming an occluded corrosion zone with the substrate, resulting in increased corrosion rate. The newly generated inner rust layers were loose and expanded outward, caused the “scab” structure to peel off, and this has a certain periodicity. After corrosion, the surface of the substrate is pit-shaped, which uniformity is poor. Electrochemical tests showed that the corrosion process of low carbon steel in salt spray environment was mainly controlled by cathode diffusion, and the corrosion rate was relatively stable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Krauss, G., Steels: Processing, Structure, and Performance, New York: ASM Int., 2005.

    Google Scholar 

  2. Mamat, M.F. and Hamzah, E., Adv. Mater. Res., 2014, vol. 845, p. 173.

    Article  Google Scholar 

  3. Ito, M., Ooi, A., Tada, E., et al., J. Electrochem. Soc., 2020, vol. 167, no. 10, p.101508.

    Article  CAS  Google Scholar 

  4. Zhang, X., Yang, S., Zhang, W., et al., Corros. Sci., 2014, vol. 82, p. 165.

    Article  CAS  Google Scholar 

  5. Veleva, L., Proc. NACE Annual Conference and Exposition, Merida, 2003.

  6. Fan, Y., Liu, W., Li, S., et al., Mater. Sci. Technol., 2020, vol. 4, p. 10.

    Google Scholar 

  7. Wang, J., Jiang, B., and Cao, J., Mater. Trans., 2020, vol. 61, no. 12, p. 2342.

    Article  CAS  Google Scholar 

  8. Zhou, Y., Zhang, P., Xiong, J., et al., RSC Adv., 2019, vol. 9, p. 23589. https://doi.org/10.1039/C9RA03983J

    Article  CAS  Google Scholar 

  9. Yang, Y., Cheng, X., Zhao, J., et al., Corros. Sci., 2021, vol. 188, no. 173, p. 109549.

    Article  CAS  Google Scholar 

  10. Talukdar, A., Baranwal, P.K., and Rajaraman, P.V., Corros. Rev., 2022, vol. 40, no. 2, p. 159.

    Article  CAS  Google Scholar 

  11. Singh, M.B., Gabriel, B.I., Venkatraman, M.S., et al., J. Chem. Sci., 2022, vol. 134, no. 1, p. 32. https://doi.org/10.1007/s12039-021-02025-x

    Article  CAS  Google Scholar 

  12. Nadi, I., Bouanis, M., Benhiba, F., et al., J. Mol. Liq., 2021, vol. 2, p. 116958.

    Article  Google Scholar 

  13. Fan, Y., Liu, W., Sun, Z., et al., J. Mater. Eng. Perform., 2020, vol. 29, no. 10, p. 6417.

    Article  CAS  Google Scholar 

  14. Hu, J., Cao, S., and Xie, J., Anti-Corros. Methods Mater., 2013, vol. 60, no. 2, p. 100.

    Article  CAS  Google Scholar 

  15. Zhang, H.S., Zhan, D.P., Bai, S.L., et al., Adv. Mater. Res., 2009, vols. 79–82, p. 1017.

    Article  Google Scholar 

  16. Liu, H., Teng, Y., Guo, J., et al., Mater. Corros., 2020, vol. 72, no. 5, p. 816.

    Article  Google Scholar 

  17. Dong, B., Liu, W., Zhang, T., et al., Eng. Failure Anal., 2021, vol. 129, p. 105720.

    Article  CAS  Google Scholar 

  18. Li, X., Wang, J., Han, E.H., et al., Corros. Sci., 2013, vol. 67, p. 169.

    Article  Google Scholar 

  19. Baboian, R. and Haynes, G., Electrochemical Corrosion Testing, ASTM Int., 1981.

    Google Scholar 

  20. Hu, J., Cao, S.A., Li, Y., et al., Anti-Corros. Methods Mater., 2014, vol. 61, no. 3, p. 139.

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by the National Natural Science Foundation of China (52074149), the Key Project of Liaoning Science and Technology Education Department (LJKZ0287), and the State Key Laboratory of Marine Equipment Made of Metal Material and Application (grant no. HGSKL-USTLN(2022)09).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuwen Chen.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, C., Liu, J., Zhang, X. et al. Corrosion Dynamics of Low Carbon Steel in Salt Spray Environment. Prot Met Phys Chem Surf 59, 729–735 (2023). https://doi.org/10.1134/S2070205123700636

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205123700636

Keywords:

Navigation