Skip to main content
Log in

Influence of chromium on the initial corrosion behavior of low alloy steels in the CO2–O2–H2S–SO2 wet–dry corrosion environment of cargo oil tankers

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

The influence of Cr on the initial corrosion behavior of low-alloy steels exposed to a CO2–O2–H2S–SO2 wet–dry corrosion environment was investigated using weight-loss measurements, scanning electron microscopy, N2 adsorption tests, X-ray diffraction analysis, and electrochemical impedance spectroscopy. The results show that the corrosion rate increases with increasing Cr content in samples subjected to corrosion for 21 d. However, the rust grain size decreases, its specific surface area increases, and it becomes more compact and denser with increasing Cr content, which indicates the enhanced protectivity of the rust. The results of charge transfer resistance (R ct) calculations indicate that higher Cr contents can accelerate the corrosion during the first 7 d and promote the formation of the enhanced protective inner rust after 14 d; the formed protective inner rust is responsible for the greater corrosion resistance during long-term exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Shiomi, M. Kaneko, K. Kashima, H. Imamura, and T. Komori, Development of anti-corrosion steel for cargo oil tanks, [in] Proceeding of TSCF 2007 Shipbuilders Meeting, Busan, 2007, p. 1.

    Google Scholar 

  2. K. Kashima, Y. Tanino, S. Kubo, A. Inami, and H. Miyuki, Development of corrosion resistant steel for cargo oil tanks, [in] Proceeding of International Symposium on Shipbuilding Technology-Fabrication and Coatings, Osaka, 2007, p. 5.

    Google Scholar 

  3. C.G. Soares, Y. Garbatov, A. Zayed, and G. Wang, Corrosion wastage model for ship crude oil tanks, Corros. Sci., 50(2008), No. 11, p. 3095.

    Article  Google Scholar 

  4. J.M. Liang, D. Tang, P.C. Zhang, H.B. Wu, H.Y. Mao, and X.T. Liu, Corrosion behavior of low-alloy steel in COT upper deck O2-CO2-SO2-H2Smoisture environment, Adv. Mater. Res., 652-654(2013), p. 916.

    Article  Google Scholar 

  5. Y. Yamaguchi and S. Terashima, Development of guidelines on corrosion resistant steels for cargo oil tanks, [in] Proceeding of ASME 2011 30th International Conference on Ocean, Offshore and Arctic Engineering, American Society of Mechanical Engineers, Rotterdam, 2011, p. 333.

    Google Scholar 

  6. Z.F. Wang, J.R. Liu, L.X. Wu, R.D. Han, and Y.Q. Sun, Study of the corrosion behavior of weathering steels in atmospheric environments, Corros. Sci., 67(2013), p. 1.

    Article  Google Scholar 

  7. H. Tamura, The role of rusts in corrosion and corrosion protection of iron and steel, Corros. Sci., 50(2008), No. 7, p. 1872.

    Article  Google Scholar 

  8. D.D.N. Singh, S. Yadav, and J.K. Saha, Role of climatic conditions on corrosion characteristics of structural steels, Corros. Sci., 50(2008), No. 1, p. 93.

    Article  Google Scholar 

  9. M. Kimura, T. Suzuki, G. Shigesato, H. Kihira, and K. Tanabe, Fe(O,OH)6 network structure of rust formed on weathering steel surfaces and its relationship with corrosion resistance, Nippon Steel Tech. Rep., 87(2003), p. 17.

  10. H.E. Townsend, Effects of alloying elements on the corrosion of steel in industrial atmospheres, Corrosion, 57(2001), No. 6, p. 497.

    Article  Google Scholar 

  11. W. Liu, X.H. Fan, S.F. Li, C.J. Shang, X.M. Wang, and M.X. Lu, Corrosion behavior of low alloy steels in a CO2-O2-H2S-SO2 wet gas environment of crude oil tanks, J. Univ. Sci. Technol. Beijing, 33(2011), No. 1, p. 33.

    Google Scholar 

  12. M. Yamashita, H. Miyuki, Y. Matsuda, H. Nagano, and T. Misawa, The long term growth of the protective rust layer formed on weathering steel by atmospheric corrosion during a quarter of a century, Corros. Sci., 36(1994), No. 2, p. 283.

    Article  Google Scholar 

  13. M. Yamashita, T. Shimizu, H. Konishi, J. Mizuki, and H. Uchida, Structure and protective performance of atmospheric corrosion product of Fe–Cr alloy film analyzed by Mössbauer spectroscopy and with synchrotron radiation X-rays, Corros. Sci., 45(2003), No. 2, p. 381.

    Article  Google Scholar 

  14. K. Asami and M. Kikuchi, Characterization of rust layers on weathering steels air-exposed for a long period, Mater. Trans., 43(2002), No. 11, p. 2818.

    Article  Google Scholar 

  15. T. Kamimura and M. Stratmann, The influence of chromium on the atmospheric corrosion of steel, Corros. Sci., 43(2001), No. 3, p. 429.

    Article  Google Scholar 

  16. J.B. Sun, W. Liu, W. Chang, Z.H. Zhang, Z.T. Li, T. Yu, and M.X. Lu, Characteristics and formation mechanism of corrosion scales on low-chromium X65 steels in CO2 environment, Acta Metall. Sin., 45(2009), No. 1, p. 84.

    Google Scholar 

  17. D.P. Li, L. Zhang, J.W. Yang, M.X. Lu, J.H. Ding, and M.L. Liu, Effect of H2Sconcentration on the corrosion behavior of pipeline steel under the coexistence of H2Sand CO2, Int. J. Miner. Metall. Mater., 21(2014), No. 4, p. 388.

    Article  Google Scholar 

  18. J.Y. Zhong, M. Sun, D.B. Liu, X.G. Li, and T.Q. Liu, Effects of chromium on the corrosion and electrochemical behaviors of ultra high strength steels, Int. J. Miner. Metall. Mater., 17(2010), No. 3, p. 282.

    Article  Google Scholar 

  19. V.G. Efremenko, K. Shimizu, A.P. Cheiliakh, T.V. Kozarevskaya, K. Kusumoto, and K. Yamamoto, Effect of vanadium and chromium on the microstructural features of V-Cr-Mn-Ni sopheroidal carbide cast irons, Int. J. Miner. Metall. Mater., 21(2014), No. 11, p. 1096.

    Article  Google Scholar 

  20. X.D. Huo, Y.Q. Li, Y.T. Zhao, H.W. Zhang, and Z.H. Li, Effect of cooling parameters on the microstructure and properties of Mo-bearing and Cr-bearing steels, Int. J. Miner. Metall. Mater., 18(2011), No. 5, p. 551.

    Article  Google Scholar 

  21. J. Guo, S.W. Yang, C.J. Shang, Y. Wang, and X.L. He, Influence of carbon content and microstructure on corrosion behaviour of low alloy steels in a Cl- containing environment, Corros. Sci., 51(2008), No. 2, p. 242.

    Article  Google Scholar 

  22. T. Kamimura, S. Hara, H. Miyuki, M. Yamashita, and H. Uchida, Composition, protective ability of rust layer formed on weathering steel exposed to various environments, Corros. Sci., 48(2006), No. 9, p. 2799.

  23. F.R. Pérez, C.A. Barrero, O. Arnache, L.C. Sánchez, K.E. García, and A.R.H. Walker, Structural properties of iron phases formed on low alloy steels immersed in sodium chloride-rich solutions, Phys. B, 404(2009), No. 8-11, p. 1347.

    Article  Google Scholar 

  24. F.R. Pérez, C.A. Barrero, A.R. Hight Walker, K.E. García, and K. Nomura, Effects of chloride concentration, immersion time and steel composition on the spinel phase formation, Mater. Chem. Phys., 117(2009), No. 1, p. 214.

    Article  Google Scholar 

  25. W. Ke and J.H. Dong, Study on the rusting evolution and the performance of resisting to atmospheric corrosion for Mn-Cu steel, Acta Metall. Sin., 46(2010), No. 11, p. 1365.

    Article  Google Scholar 

  26. L. Hao, S.X. Zhang, J.H. Dong, and W. Ke, A study of the evolution of rust on Mo-Cu-bearing fire-resistant steel submitted to simulated atmospheric corrosion, Corros. Sci., 54(2012), p. 244.

    Article  Google Scholar 

  27. K. Aasmi and M. Kikuchi, In-depth distribution of rusts on a plain carbon steel and weathering steels exposed to coastal-indutrial atmosphere for 17 years, Corros. Sci., 45(2003), No. 11, p. 2671.

    Article  Google Scholar 

  28. T. Ishikawa, T. Yoshida, K. Kandori, T. Nakayama, and S. Hara, Assessment of protective function of steel rust layers by N2 adsorption, Corros. Sci., 49(2007), No. 3, p. 1468.

    Article  Google Scholar 

  29. L. Hao, S.X. Zhang, J.H. Dong, and W. Ke, Evolution of atmospheric corrosion of MnCuP weathering steel in a simulated coastal-industrial atmosphere, Corros. Sci., 59(2012), p. 270.

    Article  Google Scholar 

  30. S. Hoerlé, F. Mazaudier, P. Dillmann, and G. Santarini, Advances in understanding atmospheric corrosion of iron. II. Mechanistic modelling of wet-dry cycles, Corros. Sci., 46(2004), No. 6, p. 1431.

    Article  Google Scholar 

  31. Y.H. Qian, D. Niu, J.J. Xu, and M.S. Li, The influence of chromium content on the electrochemical behavior of weathering steels, Corros. Sci., 71(2013), p. 72.

    Article  Google Scholar 

  32. T. Kamimura, S. Nasu, T. Segi, T. Tazaki, S. Morimoto, and H. Miyuki, Corrosion behavior of steel under wet and dry cycles containing Cr3+ ion, Corros. Sci., 45(2003), No. 8, p. 1863.

    Article  Google Scholar 

  33. M. Yamashita, H. Konishi, J. Mizuki, and H. Uchida, Nanostructure of protective rust layer on weathering steel examined using synchrotron radiation X-rays, Mater. Trans., 45(2004), No. 6, p. 1920.

    Article  Google Scholar 

  34. M. Yamashita, H. Konishi, T. Kozakura, J. Mizuki, and H. Uchida, In-situ observation of initial rust formation process on carbon steel under NaSO4 and NaCl solution films with wet/dry cycles using synchrotron radiation X-rays, Corros. Sci., 47(2005), No. 10, p. 2492.

    Article  Google Scholar 

  35. T. Ishikawa, K. Takeuchi, K. Kandori, and T. Nakayama, Transformation of γ-FeOOH to α-FeOOH in acidic solutions containing metal ions, Colloids Surf. A, 266(2005), No. 1-3, p. 155.

    Article  Google Scholar 

  36. J. Majzlan, K. Grevel, and A. Navrotsky, Thermodynamics of Fe oxides: Part II. Enthalpies of formation and relative stability of goethite (α-FeOOH), lepidocrocite (γ-FeOOH), and maghemite (γ-Fe2O3), Am. Mineral., 88(2003), No. 5-6, p. 855.

    Google Scholar 

  37. H. Antony, L. Legrand, L. Maréchal, S. Perrin, Ph. Dillmann, and A. Chaussé, Study of lepidocrocite γ-FeOOH electrochemical reduction in neutral and slightly alkaline solutions at 25°C, Electrochim. Acta, 51(2005), No. 4, p. 745.

    Article  Google Scholar 

  38. Ph. Dillmann, F. Mazaudier, and S. Hoerlé, Advances in understanding atmospheric corrosion of iron: I. Rust characterisation of ancient ferrous artefacts exposed to indoor atmospheric corrosion, Corros. Sci., 46(2004), No. 6, p. 1401.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Qh., Liu, W., Zhao, J. et al. Influence of chromium on the initial corrosion behavior of low alloy steels in the CO2–O2–H2S–SO2 wet–dry corrosion environment of cargo oil tankers. Int J Miner Metall Mater 22, 829–841 (2015). https://doi.org/10.1007/s12613-015-1140-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-015-1140-9

Keywords

Navigation