Skip to main content
Log in

Mechanical properties, microstructure and surface quality of Al-1.2Mg-0.6Si-0.2Cu alloy after solution heat treatment

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

The effect of solution heat treatment (SHT) on mechanical properties, microstructure and surface quality of Al-1.2Mg-0.6Si-0.2Cu-0.6Zn alloy was investigated by tensile test, Erichsen test, surface topography, scanning electron microscope (SEM) and electron back-scattered diffraction (EBSD). The results indicate that with the increase in SHT temperature, yield strength and cupping test value (I E) of the sheets increase greatly and reach a peak value, then decrease. Meanwhile, intermetallic compounds dissolve into matrix gradually. The grains grow up as SHT temperature increases, and abnormal grain growth leads to the surface defects after solution-treated above 560 °C. Considering mechanical properties, I E value, residual phases, grain size and surface quality of the sheets, SHT temperature for the alloy should not be higher than 550 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hirsch J, Al–Samman T. Superior light metals by texture engineering: optimized aluminum and magnesium alloys for automotive applications. Acta Mater. 2013;61(3):818.

    Article  Google Scholar 

  2. Kastensson Å. Developing lightweight concepts in the automotive industry: taking on the environmental challenge with the SåNätt project. J Clean Prod. 2014;66(1):337.

    Article  Google Scholar 

  3. Hirsch J, Laukli HI. Aluminium in innovative light-weight car design. Mater Trans. 2011;52(5):818.

    Article  Google Scholar 

  4. Hashimoto N, Eguchi N, Imamura Y. Development of aluminum alloy extrusion products with improved vehicle energy absorption. Kobelco Technol Rev. 2008;28:39.

    Google Scholar 

  5. Miller WS, Zhuang L, Bottema J, Wittebrood AJ, De Smet P, Haszler A, Vieregge A. Recent development in aluminium alloys for the automotive industry. Mater Sci Eng A. 2000;280(1):37.

    Article  Google Scholar 

  6. Wu PD, Lloyd DJ. Analysis of surface roughening in AA6111 automotive sheet. Acta Mater. 2004;52(7):1785.

    Article  Google Scholar 

  7. Wu PD, Lloyd DJ. Correlation of roping and texture in AA6111 automotive sheet. Model Simul Mater SC. 2005;13(6):981.

    Article  Google Scholar 

  8. Wu PD, Lloyd DJ, Jain M, Neale KW, Huang Y. Effects of spatial grain orientation distribution and initial surface topography on sheet metal necking. Int J Plast. 2007;23(6):1084.

    Article  Google Scholar 

  9. Bennett TA, Petrov RH, Kestens LAI. Texture-induced surface roping in an automotive aluminium sheet. Scripta Mater. 2009;61(7):733.

    Article  Google Scholar 

  10. Guillotin A, Guiglionda G, Maurice C, Driver JH. Correlation of surface roping with through-thickness microtextures in an AA6xxx sheet. Metall Mater Trans A. 2011;42(7):1919.

    Article  Google Scholar 

  11. Garrett RP, Lin J, Dean TA. An investigation of the effects of solution heat treatment on mechanical properties for AA 6xxx alloys: experimentation and modeling. Int J Plast. 2005;21(8):1640.

    Article  Google Scholar 

  12. Zhang DL, Zheng LH, StJohn DH. Effect of a short solution treatment time on microstructure and mechanical properties of modified Al–7wt% Si–0.3 wt% Mg alloy. J Light Met. 2002;2(1):27.

    Article  Google Scholar 

  13. Tiryakioğlu M. The effect of solution treatment and artificial aging on the work hardening characteristics of a cast Al–7 % Si–0.6 % Mg alloy. Mater Sci Eng A. 2006;427(1):154.

    Article  Google Scholar 

  14. Pedersen L, Arnberg L. The effect of solution heat treatment and quenching rates on mechanical properties and microstructures in AlSiMg foundry alloys. Metall Mater Trans A. 2001;32(3):525.

    Article  Google Scholar 

  15. Conrad H, Jung K. Effect of an electric field applied during the solution heat treatment of the Al–Mg–Si alloy AA6022 on the subsequent natural aging kinetics. J Light Met. 2007;42(4):1299.

    Google Scholar 

  16. Jung K, Conrad H. External electric field applied during solution heat treatment of the Al–Mg–Si alloy AA6022. J Light Met. 2004;39(21):6483.

    Google Scholar 

  17. Conrad H, Wang J. Influence of the nature of an electric field applied during the solution heat treatment of the Al–Mg–Si–Cu alloy AA6111 on subsequent natural aging. Int J Mater Res. 2011;102(11):1331.

    Article  Google Scholar 

  18. Hirth SM, Marshall GJ, Court SA, Lloyd DJ. Effects of Si on the aging behaviour and formability of aluminium alloys based on AA6016. Mater Sci Eng A. 2001;319:452.

    Article  Google Scholar 

  19. Murayama M, Hono K. Pre-precipitate clusters and precipitation processes in Al–Mg–Si alloys. Acta Mater. 1999;47(5):1537.

    Article  Google Scholar 

  20. Daud AR, Wong K. The effect of cerium additions on dent resistance of Al–0.5 Mg–1.2 Si–0.25 Fe alloy for automotive body sheets. Mater Lett. 2004;58(20):2545.

    Article  Google Scholar 

  21. Birol Y. Pre-aging to improve bake hardening in a twin-roll cast Al–Mg–Si alloy. Mater Sci Eng A. 2005;391(1):175.

    Article  Google Scholar 

  22. Serizawa A, Sato T, Poole WJ. The characterization of dislocation-nanocluster interactions in Al–Mg–Si (–Cu/Ag) alloys. Philos Mag Lett. 2010;90(4):279.

    Article  Google Scholar 

  23. Mehdi Hosseinifar, Malakhov Dmitri V. The sequence of intermetallics formation during the solidification of an Al–Mg–Si alloy containing La. Metall Mater Trans A. 2011;42(3):825.

    Article  Google Scholar 

  24. Porter DA, Easterling KE. Phase Transformations in Metals and Alloys. London: Chapman & Hall; 1992. 91.

    Book  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the National Program on Key Basic Research Project of China (No. 2012CB619504) and the National Natural Science Foundation of China (No. 51271037). The authors wish to thank Dr. Xiao-Lei Han for EBSD work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-An Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, LZ., Zhang, YA., Xiong, BQ. et al. Mechanical properties, microstructure and surface quality of Al-1.2Mg-0.6Si-0.2Cu alloy after solution heat treatment. Rare Met. 36, 550–555 (2017). https://doi.org/10.1007/s12598-015-0623-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-015-0623-1

Keywords

Navigation