Skip to main content
Log in

Optimization of the Parameters Influencing the Control of Dual-Phase AISI1040 Steel Corrosion in Sulphuric Acid Solution with Pectin as Inhibitor Using Response Surface Methodology

  • PHYSICOCHEMICAL PROBLEMS OF MATERIALS PROTECTION
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

In this work, AISI1040 steel specimens have undergone appropriate heat treatment schedules for the development of ferrite-martensite and ferrite-bainite microstructures. The role of martensite and bainite on corrosion rate and inhibition efficiency was investigated through weight loss experiments in a 0.5 M H2SO4 solution. The effect of various parameters on the corrosion behavior of two types of dual-phase AISI1040 steel has been examined. The investigation of the surface morphology of the samples was accomplished with the presence and absence of a pectin inhibitor. The experimental design was performed with Minitab 19 software and the response surface method and desirability function approach was used to reduce the number of experiments and identify locally optimized conditions for the study parameters. From the results, it was observed that the concentration of inhibitor is having the highest influence on the inhibition efficiency (with 39.38 and 69.67% contribution) followed by temperature and immersion time. Surface studies confirmed corrosion and its intensity on the metal surface as the surface became remarkably rough following exposure to the corrosive medium. The maximum inhibition efficiency of 74.02 and 80.35% is observed for a specific set of parameters for dual-phase ferrite-martensite and ferrite-bainite AISI1040 steel. From the results, it was also observed that lower weight loss and better inhibition efficiency are achieved in the case of ferrite-bainite when compared to the ferrite-martensite microstructure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.

Similar content being viewed by others

REFERENCES

  1. Giampieri, A., Ling-Chin, J., Ma, Z., Smallbone, A., and Roskilly, A.P., Appl. Energy, 2020, vol. 261, p. 114074.

    Article  Google Scholar 

  2. Prabhu, P.R., Prabhu, D., Sharma, S., and Kulkarni, S.M., J. Mater. Eng. Perform., 2020, vol. 29, no. 9, p. 5871.

    Article  CAS  Google Scholar 

  3. Prabhu, P.R., Kulkarni, S.M., and Sharma, S., J. Mater. Res. Technol., 2020, vol. 9, no. 5, p. 11402.

    Article  CAS  Google Scholar 

  4. Oevermann, T., Wegener, T., and Niendorf, T., Metals, 2019, vol. 9, no. 8, p. 825.

    Article  CAS  Google Scholar 

  5. Ben Moussa, N., Gharbi, K., Chaieb, I., and Ben Fredj, N., Int. J. Adv. Manuf. Technol., 2019, vol. 101, no. 1, p. 435.

    Article  Google Scholar 

  6. Zielecki, W., Bucior, M., Trzepiecinski, T., and Ochał, K., Int. J. Adv. Manuf. Technol., 2020, vol. 106, no. 5, p. 2583.

    Article  Google Scholar 

  7. Iribarren, J.I., Liesa, F., Alemán, C., and Armelin, E., J. Cult. Heritage, 2017, vol. 27, p. 153.

    Article  Google Scholar 

  8. Vargel, C., Corrosion of Aluminium, Amsterdam: Elsevier, 2004, p. 81.

    Book  Google Scholar 

  9. Abedini, O., Behroozi, M., Marashi, P., Ranjbarnodeh, E., and Pouranvari, M., Mater. Res., 2019, vol. 22, no. 1, p. e20170969.

    Article  CAS  Google Scholar 

  10. Gerengi, H., Sen, N., Uygur, I., and Kaya, E., J. Adhes. Sci. Technol., 2020, vol. 34, no. 8, p. 903.

    Article  CAS  Google Scholar 

  11. Song, D., et al., J. Alloys Compd., 2019, vol. 809, p. 151787.

    Article  CAS  Google Scholar 

  12. Keleştemur, O., Aksoy, M., and Yildiz, S., Int. J. Miner., Metall. Mater., 2019, vol. 16, no. 1, p. 43.

    Article  Google Scholar 

  13. Song, D., et al., J. Mater. Res. Technol., 2020, vol. 9, no. 6, p. 12281.

    Article  CAS  Google Scholar 

  14. Katiyar, P.K., Misra, S., and Mondal, K., Metall. Mater. Trans. A, 2019, vol. 50, no. 3, p. 1489.

    Article  CAS  Google Scholar 

  15. Kumar, S., Kumar, A., Vinaya, Madhusudhan, R., Sah, R., and Manjini, S., J. Mater. Eng. Perform., 2019, vol. 28, no. 6, p. 3600.

    Article  CAS  Google Scholar 

  16. Shahzad, M., Tayyaba, Q., Manzoor, T., ud-din, R., Subhani, T., and Qureshi, A.H., Mater. Res. Express, 2018, vol. 5, no. 1, p. 16516.

    Article  CAS  Google Scholar 

  17. Zhao, Z., Wang, X., Qiao, G., Zhang, S., Liao, B., and Xiao, F., Mater. Des., 2019, vol. 180, p. 107870.

    Article  CAS  Google Scholar 

  18. Basantia, S.K., Bhattacharya, A., Khutia, N., and Das, D., Met. Mater. Int., 2021, vol. 27, p 1025.

    Article  CAS  Google Scholar 

  19. Zhu, J.G., Dissertation Abstracts Int., 2019, vol. 80-11(E), p. 177. Zhu, J.G., PhD Thesis, University of Maryland, 2019.

  20. Fereiduni, E. and Ghasemi Banadkouki, S.S., Mater. Des., 2014, vol. 56, p. 232.

    Article  CAS  Google Scholar 

  21. Bilal, M.M., et al., J. Mater. Res. Technol., 2019, vol. 8, no. 6, p. 5194.

    Article  CAS  Google Scholar 

  22. Gürkan Aydın, A.Y., Int. J. Electrochem. Sci., 2019, vol. 14, p. 2126.

    Article  CAS  Google Scholar 

  23. Bignozzi, M.C., et al., Met. Mater. Int., 2020, vol. 26, no. 9, p. 1318.

    Article  CAS  Google Scholar 

  24. Zhang, Q., Li, Q., and Chen, X., RSC Adv., 2020, vol. 10, no. 71, p. 43371.

    Article  CAS  Google Scholar 

  25. Ma, J., Feng, F., Yu, B., Chen, H., and Fan, L., Int. J. Miner., Metall. Mater., 2020, vol. 27, no. 3, p. 347.

    Article  CAS  Google Scholar 

  26. Shinato, K.W., Zewde, A.A., and Jin, Y., Corros. Rev., 2020, vol. 38, no. 2, p. 101.

    Article  CAS  Google Scholar 

  27. Nathan, C.C., Corrosion Inhibitors, National Association of Corrosion Engineers, 1973.

    Google Scholar 

  28. Saxena, A., Sharma, V., Thakur, K.K., and Bhardwaj, N., J. Bio- Tribo-Corros., 2020, vol. 6, no. 2, p. 41.

  29. Sanni, S.E., Fayomi, S.I.O., Emetere, M.E., and Tenebe, T.I., Prot. Met. Phys. Chem. Surf., 2019, vol. 55, no. 2, p. 389.

    Article  CAS  Google Scholar 

  30. Mahgoub, F.M., Abdel-Nabey, B.A., and El-Samadisy, Y.A., Mater. Chem. Phys., 2010, vol. 120, no. 1, p. 104.

    Article  CAS  Google Scholar 

  31. El Faydy, M., et al., J. Mater. Res. Technol., 2020, vol. 9, no. 1, p. 727.

    Article  CAS  Google Scholar 

  32. Li, X. and Deng, S., Korean J. Chem. Eng., 2015, vol. 32, no. 11, p. 2347.

    Article  CAS  Google Scholar 

  33. Hanini, K., Benahmed, M., Boudiba, S., Selatnia, I., Akkal, S., and Laouer, H., Prot. Met. Phys. Chem. Surf., 2021, vol. 57, no. 1, p. 222.

    Article  CAS  Google Scholar 

  34. Şahin, E.A., Solmaz, R., Gecibesler, İ.H., and Kardaş, G., Mater. Res. Express, 2020, vol. 7, no. 1, p. 16585.

    Article  CAS  Google Scholar 

  35. Sotelo-Mazon, O., et al., Prot. Met. Phys. Chem. Surf., 2020, vol. 56, no. 2, p. 427.

    Article  CAS  Google Scholar 

  36. Bourazmi, H., et al., Prot. Met. Phys. Chem. Surf., 2020, vol. 56, no. 2, p. 438.

    Article  CAS  Google Scholar 

  37. Prabhu, P.R., Prabhu, D., and Rao, P., J. Mater. Res. Technol., 2020, vol. 9, no. 3, p. 3622.

    Article  CAS  Google Scholar 

  38. Prabhu, P.R., Prabhu, D., and Rao, P., Chem. Pap., 2021 vol. 75, no. 2, p. 653.

    Article  CAS  Google Scholar 

  39. Rashid, K.H. and Khadom, A.A., Korean J. Chem. Eng., 2019, vol. 36, no. 8, p. 1350.

    Article  CAS  Google Scholar 

  40. Khadom, A.A., Korean J. Chem. Eng., 2013, vol. 30, no. 12, p. 2197.

    Article  CAS  Google Scholar 

  41. Busari, A.A., et al., Silicon, 2020, vol. 13, p. 2053. https://doi.org/10.1007/s12633-020-00587-y

    Article  CAS  Google Scholar 

  42. Anadebe, V.C., Onukwuli, O.D., Omotioma, M., and Okafor, N.A., S. Afr. J. Chem. Eng., 2018, vol. 71, p. 51.

    Article  CAS  Google Scholar 

  43. Bingöl, D. and Zor, S., Corrosion, 2012, vol. 69, no. 5, p. 462.

    Article  CAS  Google Scholar 

  44. Thirumalaikumarasamy, D., Shanmugam, K., and Balasubramanian, V., J. Magnesium Alloys, 2014, vol. 2, no. 1, p. 36.

    Article  CAS  Google Scholar 

  45. Dada, M., Popoola, P., Aramide, O., Mathe, N., and Pityana, S., Mater. Today: Proc., 2021, vol. 38, p. 1024.

    CAS  Google Scholar 

  46. Tansuğ, G., Tüken, T., Kıcır, N., and Erbil, M., Ionics (Kiel), 2014, vol. 20, no. 2, p. 287.

    Article  CAS  Google Scholar 

  47. Zor, S., Erten, U., and Bingöl, D., Prot. Met. Phys. Chem. Surf., 2015, vol. 51, no. 2, p. 304.

    Article  CAS  Google Scholar 

  48. ASTM G1-90: Standard Practice for Preparation, Cleaning, and Evaluating Corrosion Test Specimens, American Society for Testing and Materials, 1999.

  49. Prabhu, D. and Rao, P., J. Bio- Tribo-Corros., 2019, vol. 5, no. 3, p. 76.

  50. Prabhu, D. and Rao, P., J. Environ. Chem. Eng., 2013, vol. 1, no. 4, p. 676.

    Article  CAS  Google Scholar 

  51. Johnson, D.C., Kuhr, B., Farkas, D., and Was, G.S., Acta Mater., 2019, vol. 170, p. 166.

    Article  CAS  Google Scholar 

  52. Bingöl, D. and Zor, S., Corrosion, 2013, vol. 69, no. 5, p. 462.

    Article  CAS  Google Scholar 

  53. Tansuğ, G., Tüken, T., Kıcır, N., and Erbil, M., Ionics (Kiel), 2014, vol. 20, no. 2, p. 287.

    Article  CAS  Google Scholar 

  54. Oguzie, E.E., Njoku, V.O., Enenebeaku, C.K., Akalezi, C.O., and Obi, C., Corros. Sci., 2008, vol. 50, no. 12, p. 3480.

    Article  CAS  Google Scholar 

  55. Akinbulumo, O.A., Odejobi, O.J., and Odekanle, E.L., Results Mater., 2020, vol. 5, p. 100074.

    Article  Google Scholar 

  56. Fouda, A.S., Al-Sarawy, A.A., Ahmed, F.S., and El-Abbasy, H.M., Corros. Sci., 2009, vol. 51, no. 3, p. 485.

    Article  CAS  Google Scholar 

  57. Tang, L., Mu, G., and Liu, G., Corros. Sci., 2003, vol. 45, no. 10, p. 2251.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

Authors are thankful to the Department of Chemistry, Department of Mechanical Engineering, and Central Instrumentation Facilities, MAHE, Manipal for lab and instrumental facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. R. Prabhu.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prabhu, D., Hiremath, P., Prabhu, P.R. et al. Optimization of the Parameters Influencing the Control of Dual-Phase AISI1040 Steel Corrosion in Sulphuric Acid Solution with Pectin as Inhibitor Using Response Surface Methodology. Prot Met Phys Chem Surf 58, 394–413 (2022). https://doi.org/10.1134/S2070205122020150

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205122020150

Keywords:

Navigation