Skip to main content
Log in

Synthesis, Structure, and Properties of Halloysite/Magnetite Composite

  • PHYSICOCHEMICAL PROCESSES AT THE INTERFACES
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

Halloysite/magnetite composite was synthesized by chemical coprecipitation. To evaluate the crystal structure, texture, surface morphology, and magnetization of the composite, electron microscopy, low-temperature nitrogen adsorption–desorption, X-ray diffraction analysis, and magnetic measurements were used. Granulometric analysis of the obtained materials showed that larger particles appear when halloysite is modified with magnetite. It was revealed that the studied samples of halloysite and composite belong to mesoporous bodies. An increase in the size of magnetite crystallites was found in the structure of magnetized clay. It is shown that samples of magnetized halloysite are characterized by higher values of the coercive force and lower values of the specific saturation magnetization compared to those found for magnetite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Stoia, M., Pacurariu, C., Istratie, R., and Niznansky, D., J. Therm. Anal. Calorim., 2015, vol. 121, p. 989. https://doi.org/10.1007/s10973-015-4641-x

    Article  CAS  Google Scholar 

  2. Hauser, A.K., Wydra, R.J., Stocke, N.A., et al., J. Controlled Release, 2015, vol. 219, p. 76. https://doi.org/10.1016/j.jconrel.2015.09.039

    Article  CAS  Google Scholar 

  3. Pershina, A.G., Sazonov, A.E., and Filimonov, V.D., Russ. Chem. Rev., 2014, vol. 83, no. 4, p. 299. https://doi.org/10.1070/RC2014v083n04ABEH004412

    Article  CAS  Google Scholar 

  4. Gubin, S.P., Koksharov, Yu.A., Khomutov, G.B., and Yurkov, G.Yu., Russ. Chem. Rev., 2005, vol. 74, no. 6, p. 489. https://doi.org/10.1070/RC2005v074n06ABEH000897

    Article  CAS  Google Scholar 

  5. Maitya, D., Kaleb, S., Kaul-Ghanekarc, R., et al., J. Magn. Magn. Mater., 2009, no. 19, p. 3093. https://doi.org/10.3103/S0027131415030104

  6. Awwad, A.M. and Salem, N.D., J. Nanosci. Nanotechnol., 2012, vol. 2, no. 6, p. 208. https://doi.org/10.5923/j.nn.20120206.09

    Article  CAS  Google Scholar 

  7. Raja, K., Verma, S., Karmakar, S., et al., Cryst. Res. Technol., 2011, vol. 46, no. 5, p. 497. https://doi.org/10.1002/crat.201100105

    Article  CAS  Google Scholar 

  8. Ahmadi, S., Chia, C.H., Zakaria, S., et al., J. Magn. Magn. Mater., 2012, vol. 324, no. 24, p. 4147. https://doi.org/10.1016/j.jmmm.2012.07.023

    Article  CAS  Google Scholar 

  9. Gao, G., Shi, R., Qin, W., et al., J. Mater. Sci., 2010, vol. 45, no. 13, p. 3483. https://doi.org/10.1021/jp810583e

    Article  CAS  Google Scholar 

  10. Alekseeva, O.V., Rodionova, A.N., Noskov, A.V., and Agafonov, A.V., Clays Clay Miner., 2019, vol. 67, no. 6, p. 471. https://doi.org/10.1007/s42860-019-00037-w

    Article  CAS  Google Scholar 

  11. Santos, A.C., Ferreira, C., Veiga, F., et al., Adv. Colloid Interface Sci., 2018, vol. 257, p. 58. https://doi.org/10.1016/j.cis.2018.05.00

    Article  CAS  Google Scholar 

  12. Gonchar, K.A., Kondakova, A.V., Jana, S., Timoshenko, V.Yu., et al., Phys. Solid State, 2016, vol. 58, no. 3, p. 601. https://doi.org/10.1134/S1063783416030112

    Article  CAS  Google Scholar 

  13. Gregg, S.J. and Sing, K.S.W., Adsorption, Surface Area and Porosity, London: Academic Press, 1982.

    Google Scholar 

  14. Mao, H., Zhu, K., Liu, X., et al., Microporous Mesoporous Mater., 2016, vol. 225, p. 216. https://doi.org/10.1016/j.micromeso.2015.11.045

    Article  CAS  Google Scholar 

  15. Tovbin, Yu.K., Molecular Theory of Adsorption in Porous Bodies, Boca Raton, FL: CRC Press, 2017.

    Book  Google Scholar 

  16. Zhang, Y., Li, Y., Zhang, Y., et al., J. Therm. Anal. Calorim., 2019, vol. 135, p. 2429. https://doi.org/10.1007/s10973-018-7354-0

    Article  CAS  Google Scholar 

  17. Zhang, Y., Bai, L., Cheng, C., et al., Appl. Clay Sci., 2019, vol. 182, p. 105259. https://doi.org/10.1016/j.clay.2019.105259

    Article  CAS  Google Scholar 

  18. Tian, X., Wang, W., Tian, N., et al., J. Hazard. Mater., 2016, vol. 309, p. 151. https://doi.org/10.1016/j.jhazmat.2016.01.081

    Article  CAS  Google Scholar 

  19. Zhong, S., Zhou, C., Zhang, X., et al., J. Hazard. Mater., 2014, vol. 276, p. 58. https://doi.org/10.1016/j.jhazmat.2014.05.013

    Article  CAS  Google Scholar 

  20. Li, Y., Zhang, Y., Zhang, Y., et al., J. Therm. Anal. Calorim., 2017, vol. 129, p. 985. https://doi.org/10.1007/s10973-017-6258-8

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

Studies were carried out on the equipment of the Upper Volga Regional Center for Physical and Chemical Research Center for Collective Use.

Funding

This work was supported by the Russian Foundation for Basic Research, grant no. 18-43-370015-a.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Noskov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alekseeva, O.V., Smirnova, D.N., Noskov, A.V. et al. Synthesis, Structure, and Properties of Halloysite/Magnetite Composite. Prot Met Phys Chem Surf 58, 275–281 (2022). https://doi.org/10.1134/S2070205122020022

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205122020022

Keywords:

Navigation