Skip to main content
Log in

Concentration and Temperature Dependent Effects on Acoustical Parameters and Thermal Conductivity in Cobalt Oxide Nanofluids

  • NANOSCALE AND NANOSTRUCTURED MATERIALS AND COATINGS
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

Investigations of acoustical and thermophysical properties of nanofluids possess a great significance for various types of energy efficient heat transfer management systems. Thus, present study was investigated to evaluate the acoustical parameters and thermal conductivity of cobalt oxide (Co3O4) nanofluids. The Co3O4 nanoparticles were synthesized by co-precipitation method using cobalt chloride as a preparatory material. The nanoparticles were characterized by XRD, FTIR, UV–Vis, TEM, SEM and EDX. Speed of sound, density and viscosity of Co3O4 nanofluids were measured, as a function of concentrations and temperatures, and different acoustic parameters as well as thermal conductivity were determined. The Co3O4 nanofluids showed increase in speed of sound, acoustic impedance and free volume up to 0.4 wt % and later on get decreased. The viscosity, adiabatic compressibility, intermolecular free length, relaxation time, absorption coefficient and Gibb’s free energy first decreased up to 0.4 wt % and then increased. With increase in temperature, these nanofluids showed decrease in speed of sound, viscosity, relaxation time, absorption coefficient, acoustic impedance and Gibb’s free energy, and increase in adiabatic compressibility, intermolecular free length and free volume. The density of Co3O4 nanofluids increased with increase in concentration and decreased with temperature. Thermal conductivity increased up to 0.4 wt % and then decreased. It also decreased with the temperature at all concentrations. Thus, it might be concluded that Co3O4 nanofluids up to 0.4 wt % concentration have significant nanoparticle-fluid interaction and might be highly suitable for heat transfer applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Kumar, D.H., Patel, H.E., Kumar, V.R.R., Sundarajan, T., Pradeep, T., and Das, S.K., Phys. Rev. Lett., 2004, vol. 93, p. 144301.

    Article  Google Scholar 

  2. WanMeher, R., Yadav, R., Yadav, K.L., and Yadaw, S.B., Exp. Therm. Fluid Sci., 2012, vol. 41, p. 158.

    Article  Google Scholar 

  3. Yu, W. and Xie, H., J. Nanomater., 2011, vol. 2012, p. 1.

    Article  Google Scholar 

  4. Shima, P.D., Philip, J., and Raj, B., J. Phys. Chem. C, 2010, vol. 114, p. 18825.

    Article  CAS  Google Scholar 

  5. Mate, V.R., Shirai, M., and Rode, C.V., Catal. Commun., 2013, vol. 33, p. 66.

    Article  CAS  Google Scholar 

  6. Warang, T., Patel, N., Santini, A., Bazzanella, N., Kale, A., and Miotello, A., Appl. Catal., A, 2012, vols. 423–424, p. 21.

  7. Li, Y., Zhao, J., Dan, Y., Ma, D., Zhao, Y., Hou, S., Lin, H., and Wang, Z., Chem. Eng. J., 2011, vol. 166, p. 428.

    Article  CAS  Google Scholar 

  8. Khalil, A.T., Ovais, M., Ullah, I., Ali, M., Shinwari, Z.K., and Maaza, M., Arabian J. Chem., 2017, vol. 13, no. 1, pp. 606–619. https://doi.org/10.1016/j.arabjc.2017.07.004

    Article  CAS  Google Scholar 

  9. Bhushan, M., Kumar, Y., Periyasamy, L., and Viswanath, A.K., Appl. Nanosci., 2018, vol. 8, p.137.

    Article  CAS  Google Scholar 

  10. Pastoriza-Gallego, M.J., Lugo, L., Legido, J.L., and Piñeiro, M.M., Nanoscale Res. Lett., 2011, vol. 6, p. 221.

    Article  Google Scholar 

  11. Rashin, M.N. and Hemalatha, J., in Advanced Nanomaterials and Nanotechnology, Giri, P.K., Goswami, D.K., and Perumal, A., Ed., Berlin, Heidelberg: Springer, 2013, p. 225.

    Google Scholar 

  12. Kiruba, R. and Jeevaraj, A.K.S., Integr. Ferroelectr., 2014, vol. 150, p. 59.

    Article  CAS  Google Scholar 

  13. Cheng, L., Bandarra, F., Enio, P., and Thome, J.R., J. Nanosci. Nanotechnol., 2008, vol. 8, p. 3315.

    Article  CAS  Google Scholar 

  14. Chakraborty, S., Saha, S.K., Pandey, J.C., and Das, S., Powder Technol., 2011, vol. 210, p. 304.

    Article  CAS  Google Scholar 

  15. Patterson, A.L., Phys. Rev., 1939, vol. 56, p. 978.

    Article  CAS  Google Scholar 

  16. Rowlinson, J.S. and Swinton, F.L., Liquid and Liquid Mixtures, London: Butterworths, 1982, p. 16.

    Google Scholar 

  17. Povey, M.J.W., Ultrasonic Techniques for Fluids Characterization, Academic Press, 1997, p. 25.

    Google Scholar 

  18. Jacobson, B., Acta Chem. Scand., 1951, vol. 5, p. 1214.

    Article  CAS  Google Scholar 

  19. Hildebrand, J.H., J. Chem. Phys. C, 1959, vol. 31, p. 1423.

    Article  CAS  Google Scholar 

  20. Prigogine, L. and Malhot, V., The Molecular Theory of the Solution, Amsterdam: North-Holland, 1957.

    Google Scholar 

  21. Suryanarayana, C.V. and Kuppusamy, J., J. Acoust. Soc. India, 1976, vol. 4, p. 75.

    Google Scholar 

  22. Bird, R.B., Stewart, W.E., and Lightfoot, E.N., Transport Phenomena, New York: John Wiley and Sons, 2011.

    Google Scholar 

  23. Rashin, M.N. and Hemalatha, J., J. Mol. Liq., 2014, vol. 197, p. 257.

    Article  Google Scholar 

  24. Yarestani, M., Khalaji, A.D., Rohani A., and Das, D., J. Sci., Islamic Repub. Iran, 2014, vol. 25, p. 339.

    Google Scholar 

  25. Narayan, R.V., Kanniah, V., and Dhathathreyan, A., J. Chem. Sci., 2006, vol. 118, p. 179.

    Article  CAS  Google Scholar 

  26. Sun, L., Li, H., Ren, L., and Hu, C., Solid State Sci., 2009, vol. 11, p. 108.

    Article  CAS  Google Scholar 

  27. Farhadi, S., Safabakhsh, J., and Zaringhadam, P., J. Nanostruct. Chem., 2013, vol. 3, p. 69.

    Article  Google Scholar 

  28. Kiruba, R., Gopalakrishnan, M., Mahalingam, T., and Jeevaraj, A.K.S., J. Nanofluids, 2012, vol. 1, p. 97.

    Article  CAS  Google Scholar 

  29. Suganthi, K.S., Vinodhan, V.L., and Rajan, K.S., Appl. Energy, 2014, vol. 135, p. 548.

    Article  CAS  Google Scholar 

  30. Praharaj, M.K., Mishra, P., Mishra, S., and Satapathy, A., J. Chem. Pharm. Res., 2013, vol. 5, p. 49.

    CAS  Google Scholar 

  31. Gupta, V., Magotra, U., Sandarve Sharma, A.K., and Sharma, M., J. Chem. Pharm. Res., 2015, vol. 7, p. 313.

    CAS  Google Scholar 

  32. Ali, A., Hyder, S., and Nain, A.K., Indian J. Phys., Part B, 2000, vol. 74, p. 63.

    Google Scholar 

  33. Hemalatha, J., Prabhakaran, T., and Nalini, R.P., Microfluid. Nanofluid., 2011, vol. 10, p. 263.

    Article  CAS  Google Scholar 

  34. Naik, R.R., Bawankar, S.V., and Ghodki, V.M., J. Polym. Biopolym. Phys. Chem., 2015, vol. 3, p. 1.

    Google Scholar 

  35. Umadevi, M. and Kesavasamy, R., Int. J. Res. Chem. Environ., 2012, vol. 2, p. 157.

    CAS  Google Scholar 

  36. Chimankar, O.P., Ranjeeta, S., and Tabhane, V.A., J. Chem. Pharm. Res., 2011, vol. 3, p. 587.

    CAS  Google Scholar 

  37. Umadevi, M. and Kesavasamy, R., Int. J. Chem., Environ. Pharm. Res., 2012, vol. 3, p. 72.

    CAS  Google Scholar 

  38. Kamila, S. and Gopal, V.R.V., Heliyon, 2019, vol. 5, p. e02445.

    Article  Google Scholar 

  39. Gupta, M., Singh, V., Kumar, R., and Said, Z., Renewable Sustainable Energy Rev., 2017, vol. 74, p. 638.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are thankful to Department of Chemistry (University of Jammu) for providing necessary facilities and support for conducting present study and CSIR UGC for Junior Research Fellowship (JRF) to the first author. The authors gratefully acknowledge SAIF STIC (Kochi), SAIF Chandigarh, CIL Chandigarh for providing the facilities for characterization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vijayta Gupta.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, V., Sharma, S., Magotra, U. et al. Concentration and Temperature Dependent Effects on Acoustical Parameters and Thermal Conductivity in Cobalt Oxide Nanofluids. Prot Met Phys Chem Surf 57, 1198–1205 (2021). https://doi.org/10.1134/S2070205121060095

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205121060095

Keywords:

Navigation