Skip to main content
Log in

Investigations on Acoustical and Thermal Properties of Ethylene Glycol Based Nickel Oxide Nanofluids: Concentration and Temperature

  • PHYSICAL CHEMISTRY OF NANOCLUSTERS AND NANOMATERIALS
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

The acoustical and thermophysical properties of nanofluids is of great importance in heat exchange systems. Thus, these properties of nickel oxide (NiO) nanoparticles dispersed in ethylene glycol (EG) were studied after synthesizing and characterization of NiO nanoparticles. Speed of sound, acoustic impedance and free volume for NiO-EG nanofluids first increased upto 0.6 wt % and then decreased. However, viscosity, adiabatic compressibility and intermolecular free length first decreased upto 0.6 wt % and then increased. The density was observed to increase with increase in concentration and decrease with temperature. Speed of sound, viscosity and acoustic impedance decreases with increase in temperature, whereas, adiabatic compressibility, intermolecular free length and free volume increases. Thermal conductivity of NiO-EG nanofluids increased upto 0.6 wt % followed by its decrease, and it also decreased with the temperature at all concentrations. In conclusion, NiO-EG nanofluids upto 0.6 wt % concentration are very useful for nanofluids applications in thermal systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. C. K. Mangrulkar and V. M. Kriplani, Int. J. Eng. Technol. 3, 136 (2013).

    Google Scholar 

  2. S. Aberoumand, H. Aberoumand, and K. Javaherdeh, Am. J. Adv. Sci. Res. 1, 375 (2013).

    Google Scholar 

  3. H. Xie, J. Wang, T. Xi, Y. Liu, and F. Ai, J. Appl. Phys. 91, 4568 (2002).

    Article  CAS  Google Scholar 

  4. WanMeher, R. R. Yadav, K. L. Yadav, and S. B. Yadaw, Exp. Therm. Fluid Sci. 41, 158 (2012).

    Article  Google Scholar 

  5. J. Hemalatha, T. Prabhakaran, and R. P. Nalini, Microfluid. Nanofluid. 10, 263 (2011).

    Article  CAS  Google Scholar 

  6. N. T. Nguyen, A. Beyzavi, K. M. Ng, and X. Huang, Microfluid. Nanofluid. 3, 571 (2007).

    Article  Google Scholar 

  7. C. He, T. Sasaki, Y. Shimizu, and N. Koshizaki, Appl. Surf. Sci. 254, 2196 (2008).

    Article  CAS  Google Scholar 

  8. R. P. Singh, V. K. Shukla, R. S. Yadav, P. K. Sharma, P. K. Singh, and A. C. Pandey, Adv. Mater. Lett. 2, 313 (2011).

    Article  Google Scholar 

  9. S. Kamila and J. K. Dash, J. Mol. Liq. 172, 71 (2012).

    Article  CAS  Google Scholar 

  10. S. Kamila, S. K. Kamilla, and B. B. Swain, Phys. Chem. Liq. 45, 323 (2007).

    Article  Google Scholar 

  11. T. L. Lai, Y. Y. Hong, G. Y. Gau, Y. Y. Shu, and C. B. Wang, Appl. Catal. B 68, 147 (2006).

    Article  CAS  Google Scholar 

  12. Y. Nuli, S. Zhao, and Q. Qin, J. Power Sources 114, 113 (2003).

    Article  CAS  Google Scholar 

  13. V. Biji and M. A. Khadar, Mater. Sci. Eng. A 304–306, 814 (2001).

    Article  Google Scholar 

  14. R. H. Kodama, J. Magn. Magn. Mater. 200, 359 (1999).

    Article  CAS  Google Scholar 

  15. J. S. Rowlinson, F. L. Swinton, J. E. Baldwin, A. D. Buckingham, and S. Danishefsky, Liquids and Liquid Mixtures (Butterworths, London, UK, 1982).

    Google Scholar 

  16. M. J. W. Povey, Ultrasonic Techniques for Fluids Characterization (USA, 1997).

    Google Scholar 

  17. B. Jacobson, Acta Chem. Scand. 5, 1214 (1951).

    Article  CAS  Google Scholar 

  18. J. H. Hildebrand, J. Chem. Phys. 31, 1423 (1959).

    Article  CAS  Google Scholar 

  19. L. Prigogine and V. Malhot, The Molecular Theory of the Solution (North-Holland, New York, 1957).

    Google Scholar 

  20. C. V. Suryanarayana and J. Kuppusamy, J. Acoust. Soc. Ind. 4, 75 (1976).

    Google Scholar 

  21. R. B. Bird, W. E. Stewart, and E. N. Lightfoot, Transport Phenomena (Wiley, New York, 2011).

    Google Scholar 

  22. M. N. Rashin and J. Hemalatha, J. Mol. Liq. 197, 257 (2014).

    Article  Google Scholar 

  23. K. Karthik, G. K. Selvan, M. Kanagaraj, S. Arumugam, and N. V. Jaya, J. Alloys Compd. 509, 181 (2011).

    Article  CAS  Google Scholar 

  24. M. Kanthimathi, A. Dhathathreyan, and B. V. Nair, Mater. Lett. 58, 2914 (2004).

    Article  CAS  Google Scholar 

  25. M. Salavati-Niasari, N. Mir, and F. Davar, Polyhedron 28, 1111 (2009).

    Article  CAS  Google Scholar 

  26. R. Kiruba, M. Gopalakrishnan, T. Mahalingam, A. Jeevaraj, and A. K. Solomon, J. Nanofluids 1, 97 (2012).

  27. Y. Tan, Y. Song, and Q. Zheng, Nanoscale 4, 6997 (2012).

    Article  CAS  Google Scholar 

  28. K. S. Suganthi, V. L. Vinodhan, and K. S. Rajan, Appl. Energy 135, 548 (2014).

    Article  CAS  Google Scholar 

  29. M. N. Rashin and J. Hemalatha, Advanced Nanomaterials and Nanotechnology (Berlin, Heidelberg, 2013).

    Google Scholar 

  30. V. Gupta, A. K. Sharma, and M. Sharma, Chem. Sci. Trans. 3, 736 (2014).

    Google Scholar 

  31. S. Kamila and V. R. V. Gopal, Heliyon 5, e02445 (2019).

    Article  Google Scholar 

  32. M. K. Praharaj, P. Mishra, S. Mishra, and A. Satapathy, Adv. Appl. Sci. Res. 3, 1518 (2012).

    CAS  Google Scholar 

  33. S. Panda and A. P. Mahapatra, J. Chem. Pharmaceut. Res. 6, 818 (2014).

    Google Scholar 

  34. R. R. Naik, S. V. Bawankar, and V. M. Ghodki, J. Polym. Biopolym. Phys. Chem. 3, 1 (2015).

    Google Scholar 

  35. M. Umadevi and R. Kesavasamy, Int. J. Res. Chem. Environ. 2, 157 (2012).

    CAS  Google Scholar 

  36. B. Tajik, A. Abbassi, M. Saffar-Avval, and M. A. Najafabadi, Powder Technol. 217, 171 (2012).

    Article  CAS  Google Scholar 

  37. R. Kiruba and A. K. S. Jeevaraj, Integr. Ferroelectr. 150, 59 (2014).

    Article  CAS  Google Scholar 

  38. M. Kumar, N. Sawhney, A. K. Sharma, and M. Sharma, Ind. J. Pure Appl. Phys. 55, 574 (2017).

    Google Scholar 

  39. Y. Xuan and Q. Li, Int. J. Heat Fluid Flow 21, 58 (2000).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are thankful to Department of Chemistry (University of Jammu) for providing essential facilities and support for conducting present study. We also gratefully acknowledge SAIF STIC (Kochi), SAIF Chandigarh, CIL Chandigarh for providing the facilities for characterization studies. The first author is highly thankful to CSIR- UGC, New Delhi, India for granting Junior Research Fellowship (JRF) during this investigation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Gupta.

Ethics declarations

Authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, V., Magotra, U., Sharma, A.K. et al. Investigations on Acoustical and Thermal Properties of Ethylene Glycol Based Nickel Oxide Nanofluids: Concentration and Temperature. Russ. J. Phys. Chem. 94, 2312–2318 (2020). https://doi.org/10.1134/S0036024420110096

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024420110096

Keywords:

Navigation