Skip to main content
Log in

The Effect of a Limited System Volume on Surface Tensions in a Vapor–Liquid–Solid System

  • PHYSICOCHEMICAL PROCESSES AT THE INTERFACES
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

Using the lattice gas model, we consider a unified description of three types of two-phase interfaces (vapor–liquid, solid–vapor, and solid–liquid) in the vapor–liquid meniscus system inside a size-limited pore in the form of a rectangular parallelepiped. Pore walls are considered to be undeformable. They form the external field for a stratifying fluid. The state of coexisting “vapor in a pore” and “fluid in a pore” phases satisfy the equality of chemical potentials, which excludes the appearance of metastable states. We present a calculation procedure for molecular distributions and shapes of menisci in the isolated pore considered, which enables the equally accurate calculation of molecular distributions in heterogeneous distributed models of transition regions of three interfaces. The calculation procedure of the surface tension (ST) on three types of two-phase interfaces of the liquid–vapor–solid wall system is elaborated. The procedure of introducing a contact angle in the liquid–vapor–solid pore wall system is described using adsorbate molecular distributions in the considered pore. It is obtained that, as the system decreases, the critical temperature lowers, while the pressure, chemical potential, and ST values of a fluid with a solid increase. Liquid–vapor ST decreases with decreasing area of pore bases (i.e., with pore narrowing), and when the pore height increases, liquid–vapor ST increases. The dependences of the liquid–vapor transition region width and the contact angle of the vapor–liquid meniscus are derived as functions on the pore width and the pore wall potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Lykov, A.V., Yavleniya perenosa v kapillyarno-poristykh telakh (Transfer Phenomena in Capillary-Porous Bodies), Moscow: Gos. Izd. Tekhniko-Teoreticheskoi Literatury, 1954.

  2. Carman, P.C., Flow of Gases Through Porous Media, London: Butterworths, 1956.

    Google Scholar 

  3. Rachinskii, V.V., Vvedenie v obshchuyu teoriyu dinamiki adsorbtsii i khromatografii (Introduction into General Theory of Adsorption and Chromatography Dynamics), Moscow: Nauka, 1964.

  4. Radushkevich, L.V., Osnovnye problemy teorii fizicheskoi adsorbtsii (Fundamental Problems on Theory of Physical Adsorption), Moscow: Nauka, 1970.

  5. Chizmadzhev, Yu.A., et al., Makrokinetika protsessov v poristykh sredakh (Macro-Kinetics of Processes in Porous Media), Moscow: Nauka, 1971.

  6. Satterfield, C.N., Mass Transfer in Heterogeneous Catalysis, Cambridge, MA: MIT Press, 1970.

    Google Scholar 

  7. Kheifets, L.I. and Neimark, A.V., Mnogofaznye protsessy v poristykh telakh (Multi-Phase Processes in Porous Bodies), Moscow: Khimiya, 1982.

  8. Ruthven, D.M., Principles of Adsorption and Adsorption Processes, New York: Willey, 1984.

    Google Scholar 

  9. Mason, E.A., Malinauskas, A.P., Gas Transport in Porous Media: Dusty-Gas Model, Amsterdam: Elsevier, 1983.

    Google Scholar 

  10. Greg, S.J. and Sing, K.S.W., Adsorption, Surface Area and Porosity, London: Academic Press, 1982.

    Google Scholar 

  11. Timofeev, D.P., Kinetika adsorbtsii (Adsorption Kinetics), Moscow: USSR Acad. Sci., 1962.

  12. Tovbin, Yu.K., Molecular Theory of Adsorption in Porous Solids, Boca Raton, FL: CRC Press, 2017.

    Book  Google Scholar 

  13. The Collected Works of J. Willard Gibbs, in Two Volumes, New York: Longmans Green, 1928, vol. 1.

  14. Bazarov, I.P., Termodinamika (Thermodynamics), Moscow: Vysshaya Shkola, 1991.

    Google Scholar 

  15. Storonkin, A.V., Termodinamika geterogennykh sistem (Thermodynamics of Heterogeneous Systems), Leningrad: Pushkin Leningrad State Univ., 1967, parts 1 and 2.

  16. Hill, T.L., J. Chem. Phys., 1962, vol. 36, no. 12, p. 3182.

    Article  CAS  Google Scholar 

  17. Hill, T.L., Thermodynamics of Small Systems, New York, Amsterdam: W.A. Benjamin Publ., 1963, part 1; Hill, T.L., Thermodynamics of Small Systems, New York: W.A. Benjamin Publ., 1964, part 2.

  18. Gross, D.H.E., Microcanonical Thermodynamics: Phase Transitions in “Small” Systems, vol. 66 of Lecture Notes in Physics, Singapore: World Scientific, 2001.

  19. Tovbin, Yu.K., Russ. J. Phys. Chem., B, 2010, vol. 4, no. 6, p. 1033.

    Google Scholar 

  20. Tovbin, Yu.K., Russ. J. Phys. Chem. A, 2012, vol. 86, no. 7, p. 1180.

    Article  CAS  Google Scholar 

  21. Tovbin, Yu.K., Russ. J. Phys. Chem. A, 2015, vol. 89, no. 3, p. 547.

    Article  CAS  Google Scholar 

  22. Uvarov, N.F. and Boldyrev, V.V., Usp. Khim., 2001, vol. 70, no. 4, p. 307.

    Article  Google Scholar 

  23. Petrii, O.A. and Tsirlina, G.A., Usp. Khim., 2001, vol. 70, no. 4, p. 330.

    Article  Google Scholar 

  24. Haruta, M. and Date, M., Appl. Catal., A, 2001, vol. 222, p. 427.

  25. Daniel, M.-C. and Austric, D., Chem. Rev., 2004, vol. 104, p. 293.

    Article  CAS  Google Scholar 

  26. Haruta, M., Gold Bull., 2004, vol. 37, nos. 1–2, p. 27.

    Article  CAS  Google Scholar 

  27. Smirnov, V.V., Lanin, S.N., Vasil’kov, A.Yu., Nikolaev, S.A., Murav’eva, G.P., and Tyurina, L.A., Izv. Akad. Nauk, Ser. Khim., 2005, no. 10, p. 2215.

  28. Rostovshchikova, T.N., Smirnov, V.V., Kozhevin, V.M., Yavsin, D.A., and Gurevich, S.A., Ross. Nanotekhnol., 2007, vol. 2, nos. 1–2, p. 47.

    Google Scholar 

  29. Eliseev, A.A. and Lukashin, A.V., Funktsional’nye nanomaterialy (Functional Nanomaterials), Moscow: Fizmatlit, 2010.

  30. Suzdalev, I.P., Nanotekhnologiya: fiziko-khimiya nanoklasterov, nanonostruktur i nanomaterialov (Nanotechnology: Physical Chemistry of Nanoclusters, Nanostructures, and Nanomaterials), Moscow: KomKniga, 2006.

  31. Suzdalev, I.P., Elektricheskie i magnitnye perekhody v nanoklasterakh i nanostrukturakh (Electrical and Magnetic Transitions in Nanoclusters and Nanostructures), Moscow: Krasand, 2011.

  32. Springer Handbook of Nanotechnology, Bhushan, B., Ed., Berlin, Heidelberg, New York: Springer, 2007.

  33. Tovbin, Yu.K. and Petukhov, A.G., Izv. Akad. Nauk, Ser. Khim., 2008, no. 1, p. 18.

  34. Polukhin, V.A. and Vatolin, N.A., Modelirovanie razuporyadochennykh i nanostrukturirovannykh faz (Simulation of Disordered and Nanostructured Phases), Yekaterinburg: Ural Branch Russ. Acad. Sci., 2011.

  35. Tovbin, Yu.K., Small Systems and Fundamentals of Thermodynamics, Boca Raton, FL: CRC Press, 2018.

    Book  Google Scholar 

  36. Tovbin, Yu.K. and Zaitseva, E.S., Prot. Met. Phys. Chem. Surf., 2017, vol. 53, no. 5, p. 765.

    Article  CAS  Google Scholar 

  37. Tovbin, Yu.K. and Zaitseva, E.S., Russ. J. Phys. Chem. A, 2020, vol. 94, no. 12, p. 2534.

    Article  CAS  Google Scholar 

  38. Zaitseva, E.S., Gvozdeva, E.E., and Tovbin, Yu.K., Prot. Met. Phys. Chem. Surf., 2020, vol. 56, no. 6, p. 1107.

    Article  CAS  Google Scholar 

  39. Volmer, M., Kinetik der Phasenbildung, Dresden: Verlag Theodor Steinkopff, 1939.

    Google Scholar 

  40. Adamson, A.W., Physical Chemistry of Surfaces, New York: Wiley, 1975.

    Google Scholar 

  41. Jaycock, M.J. and Parfitt, G.D., Chemistry of Interfaces, New York: Wiley, 1981.

    Google Scholar 

  42. Rowlinson, J.S. and Widom, B., Molecular Theory of Capillarity, Oxford: Clarendon Press, 1982.

    Google Scholar 

  43. Tovbin, Yu.K., Theory of Physical Chemistry Processes at a Gas–Solid Interface, Boca Raton, FL: CRC Press, 1991.

    Google Scholar 

  44. Tovbin, Yu.K., Zh. Fiz. Khim., 1992, vol. 66, no. 5, p. 1395.

    CAS  Google Scholar 

  45. Tovbin, Yu.K. and Petukhov, A.G., Izv. Akad. Nauk, Ser. Khim., 2008, no. 1, p. 18.

Download references

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 18-03-00030a.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. K. Tovbin.

Additional information

Translated by L. Chernikova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaitseva, E.S., Gvozdeva, E.E. & Tovbin, Y.K. The Effect of a Limited System Volume on Surface Tensions in a Vapor–Liquid–Solid System. Prot Met Phys Chem Surf 57, 647–658 (2021). https://doi.org/10.1134/S2070205121040250

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205121040250

Keywords:

Navigation