Skip to main content
Log in

Three Types of Two-Phase Surface Tensions of Stratifying Vapor and Fluid inside a Slit-Like Pore

  • CHEMICAL THERMODYNAMICS AND THERMOCHEMISTRY
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

Three types of two-phase interfaces (vapor–liquid, solid–vapor, and solid–liquid) are considered in a liquid–vapor meniscus system inside a slit-like pore. A unified description of these interface surfaces is given on the basis of the lattice gas model, ensuring a uniformly accurate calculation of molecular distributions in heterogeneous distributed models of the transitional regions of interfaces. It is shown that undeformable pore walls generate an external field, affecting the molecular distribution and forming adsorption films due to the potential of adsorbate–adsorbent interaction. Ways of calculating surface tension (ST) via the excess free energy of the interface (according to Gibbs) on the three given two-phase interfaces are discussed, along with means that consider specific features of the nonequilibrium state of a solid. It is established that the state of coexisting vapor-in-a-pore and fluid-in-a-pore phases must satisfy the equality of the chemical potential that excludes the emergence of metastable states. Vapor–solid and liquid–solid STs outside the region of three-phase contact are calculated for the first time, along with local values of a vapor–liquid ST as a function of the removal of a local part of the boundary from the pore walls. It is found that in the center of a pore, the solid–liquid ST is an order of magnitude greater than the liquid–vapor ST, and the solid–vapor ST is two orders of magnitude greater than this value. Local values of a vapor–liquid ST change nonmonotonically as they move away from a wall.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. A. V. Lykov, Transfer Phenomena in Capillary-Porous Bodies (GITTL, Moscow, 1954) [in Russian].

    Google Scholar 

  2. P. C. Carman, Flow of Gases through Porous Media (Butterworths, London, 1956).

    Google Scholar 

  3. L. I. Heifets and A. V. Neimark, Multiphase Processes in Porous Media (Khimiya, Moscow, 1982) [in Russian].

    Google Scholar 

  4. S. Gregg and K. Sing, Adsorption, Surface Area and Porosity (Academic, New York, 1982).

    Google Scholar 

  5. D. P. Timofeev, Adsorption Kinetics (Akad. Nauk SSSR, Moscow, 1962) [in Russian].

    Google Scholar 

  6. Yu. K. Tovbin, The Molecular Theory of Adsorption in Porous Solids (Fizmatlit, Moscow, 2012; CRC, Boca Raton, FL, 2017).

  7. V. V. Rachinskii, An Introduction to the General Theory of Sorptional and Chromatography Dynamics (Nauka, Moscow, 1964) [in Russian].

    Google Scholar 

  8. L. V. Radushkevich, The Main Problems of Physical Adsorption Theory (Nauka, Moscow, 1970) [in Russian].

    Google Scholar 

  9. Yu. A. Chizmadzhev, V. S. Markin, M. R. Tarasevich, and Yu. G. Chirkov, Macrokinetics of Processes in Liquid Media (Nauka, Moscow, 1971) [in Russian].

    Google Scholar 

  10. C. N. Satterfield, Mass Transfer in Heterogeneous Catalysis (MIT Press, Cambridge, MA, 1970).

    Google Scholar 

  11. D. M. Ruthven, Principles of Adsorption and Adsorption Processes (Wiley, New York, 1984).

    Google Scholar 

  12. E. A. Mason and A. P. Malinauskas, Gas Transport in Porous Media: The Dusty-Gas Model (Elsevier Science, Amsterdam, 1983).

    Google Scholar 

  13. E. S. Zaitseva and Yu. K. Tovbin, Russ. J. Phys. Chem. A 94, 1761 (2020).

  14. A. Adamson, The Physical Chemistry of Surfaces (Wiley, New York, 1976).

    Google Scholar 

  15. M. Jaycock and J. Parfitt, Chemistry of Interfaces (Ellis Horwood, Chichester, U.K., 1981).

    Google Scholar 

  16. W. A. Steele, The Interactions of Gases with Solid Surfaces (Pergamon, New York, 1974).

    Google Scholar 

  17. N. N. Avgul’, A. V. Kiselev, and D. P. Poshkus, Adsorption of Gases and Vapors at Uniform Surfaces (Khimiya, Moscow, 1975) [in Russian].

    Google Scholar 

  18. A. V. Kiselev, D. P. Poshkus, and Ya. I. Yashin, Molecular Foundations of Adsorptional Chromatography (Khimiya, Moscow, 1986) [in Russian].

    Google Scholar 

  19. Yu. K. Tovbin, Zh. Fiz. Khim. 66, 1395 (1992).

    CAS  Google Scholar 

  20. Yu. K. Tovbin, Russ. J. Phys. Chem. A 92, 2424 (2018).

    Article  CAS  Google Scholar 

  21. Yu. K. Tovbin, Russ. J. Phys. Chem. A 93, 1662 (2019).

    Article  CAS  Google Scholar 

  22. Yu. K. Tovbin, Theory of Physicochemical Processes at the Gas–Solid Interface (Nauka, Moscow, 1990; CRC, Boca Raton, FL, 1991).

    Google Scholar 

  23. Yu. K. Tovbin, Russ. J. Phys. Chem. A 80, 1554 (2006).

    Article  CAS  Google Scholar 

  24. Yu. K. Tovbin, Small Systems and Fundamentals of Thermodynamics (Fizmatlit, Moscow, 2018; CRC, Boca Raton, FL, 2018).

  25. Yu. K. Tovbin, D. V. Eremich, V. N. Komarov, and E. E. Gvozdeva, Russ. J. Phys. Chem. B 1, 178 (2007).

    Article  Google Scholar 

  26. S. Ono and S. Kondo, Handbuch der Physik (Springer, Berlin, 1960).

    Google Scholar 

  27. J. Rowlinson and B. Widom, Molecular Theory of Capillarity (Oxford Univ., Oxford, U.K., 1978).

    Google Scholar 

  28. Yu. K. Tovbin, Russ. J. Phys. Chem. A 94, 1686 (2020).

  29. Yu. K. Tovbin, Russ. J. Phys. Chem. A 94, 1515 (2020).

Download references

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 18-03-00030a.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. K. Tovbin.

Additional information

Translated by L. Chernikova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tovbin, Y.K., Zaitseva, E.S. Three Types of Two-Phase Surface Tensions of Stratifying Vapor and Fluid inside a Slit-Like Pore. Russ. J. Phys. Chem. 94, 2534–2543 (2020). https://doi.org/10.1134/S0036024420120298

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024420120298

Keywords:

Navigation