Skip to main content
Log in

Study of the Sorption of Cesium Cations by a Sorbent Based on Titanium Phosphate

  • PHYSICOCHEMICAL PROCESSES AT THE INTERFACES
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

The effect of temperature and the cesium concentration in the external solution on the sorption capacity of titanium phosphate obtained upon the heterogeneous interaction of the (NH4)2TiO(SO4)2 · H2O crystalline salt with phosphoric acid is studied. Sorption on titanium phosphate is shown to be best described by the Langmuir isotherm. When describing the sorption kinetics of solutions, it is necessary to consider both the possibility of diffusion and adsorption limiting the process rate. The use of the chemical kinetic models shows that the stage of chemical interaction of metal ions with functional groups of the sorbent also contributes to the overall rate of the process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Poluektov, P.P., Sukhanov, L.P., and Matyunin, Yu.I., Ross. Khim. Zh., 2005, vol. 49, no. 4, p. 123.

    Google Scholar 

  2. Myasoedov, B.F., Vopr. Radiats. Bezop., 1997, no. 1, p. 3.

  3. Myasoedov, B.F., Ross. Khim. Zh., 2005, vol. 49, no. 2, p. 64.

    CAS  Google Scholar 

  4. Popova, N.N., Tananaev, I.G., Rovnyi, S.I., et al., Usp. Khim., 2003, vol. 72, no. 2, p. 115.

    Article  Google Scholar 

  5. Novikov, A.P., Kalmykov, S.N., and Tkachev, V.V., Ross. Khim. Zh., 2005, vol. 49, no. 2, p. 119.

    CAS  Google Scholar 

  6. Milonjic', S., Bispo, I., Fedoroff, M., Loss-Neskovic, C., et al., J. Radioanal. Nucl. Chem., 2002, vol. 252, no. 3, p. 497.

    Article  Google Scholar 

  7. Horwit, E.P., J. Inorg. Nucl. Chem., 1966, vol. 28, nos. 6–7, p. 1469.

    Article  Google Scholar 

  8. Dolmatov, Yu.D., Bulavina, Z.N., and Dolmatov, M.Yu., Radiokhimiya, 1972, vol. 14, no. 4, p. 526.

    CAS  Google Scholar 

  9. Lokshin, E.P., Ivanenko, V.I., and Avsaragov, Kh.B., At. Energ., 2002, vol. 92, no. 2, p. 118.

    Article  Google Scholar 

  10. Ortiz-Oliveros, H.B., Flores-Espinosa, R.M., Ordonez-Regil, E., et al., Chem. Eng. J., 2014, vol. 236, p. 398.

    Article  CAS  Google Scholar 

  11. Kapnisti, M., Hatzidimitriou, A.G., Noli, F., et al., J. Radioanal. Nucl. Chem., 2014, vol. 302, p. 679.

    Article  CAS  Google Scholar 

  12. Trublet, M., Maslova, M., Rusanova, D., et al., RSC Adv., 2017, vol. 7, p. 1989.

    Article  CAS  Google Scholar 

  13. Bereznitski, Y., Jaroniec, M., Bortun, A., et al., J. Colloid Interface Sci., 1997, vol. 191, p. 442.

    Article  CAS  Google Scholar 

  14. Takahashi, H., Oi, T., and Hosoe, M., J. Mater. Chem., 2002, vol. 12, p. 2513.

    Article  CAS  Google Scholar 

  15. Korosi, L., Papp, S., and Dekany, I., Chem. Mater., 2010, vol. 22, p. 4356.

    Article  CAS  Google Scholar 

  16. Li, Y. and Whittingham, M., Solid State Ionics, 1993, vols. 63–65, pp. 391–395.

    Article  Google Scholar 

  17. Trublet, M., Maslova, M., Rusanova, D., et al., Mater. Chem. Phys., 2016, vol. 183, p. 467.

    Article  CAS  Google Scholar 

  18. Langmuir, I., J. Am. Chem. Soc., 1916, vol. 38, p. 2221.

    Article  CAS  Google Scholar 

  19. Freundlich, H.M.F., J. Phys. Chem. Soc., 1906, vol. 40, p. 1361.

    Google Scholar 

  20. Campbell, J.A., Chemical Systems: Energetics, Dynamics, Structure, San Francisco, CA: W. H. Freeman, 1970, vol. 2.

    Google Scholar 

  21. Neudachina, L.K., Petrova, Yu.S., Zasukhin, A.S., et al., Anal. Kontrol, 2011, vol. 15, no. 1, p. 88.

    Google Scholar 

  22. Znamenskii, Yu.P., Zh. Fiz. Khim., 1993, vol. 67, no. 9, p. 1924.

    CAS  Google Scholar 

  23. Piplai, T., Kumar, A., and Alappat, B.J., Water Environ. Res., 2018, vol. 90, no. 5, p. 409.

    Article  CAS  Google Scholar 

  24. El’kind, K.M. and Trunova, I.G., Tr. Nizhegorod. Gos. Tekh. Univ., 2013, no. 4 (97), p. 272.

  25. Kokotov, Yu.A. and Pasechnik, V.A., Ravnovesie i kinetika ionnogo obmena (Equilibrium and Kinetics of Ion Exchange), Leningrad: Khimiya, 1979.

  26. Saiers, J.E., Hornberger, G.M., and Liang, L., Water Resour. Res., 1994, vol. 30, p. 2499.

    Article  CAS  Google Scholar 

  27. Ho, Y.S., Ng, J.C.Y., and McKay, G., Sep. Purif. Methods, 2000, no. 2 (29), p. 189.

  28. Ho, Y.-S., J. Hazardous Materials, 2006, vol. 136, p. 681.

    Article  CAS  Google Scholar 

  29. Kołodyńska, D., Gęca, M., Skwarek, E., and Goncharuk, O., Nanoscale Res. Lett., 2018, vol. 13, p. 1.

    Article  Google Scholar 

Download references

Funding

The studies were supported by the Russian Science Foundation (RSF) as part of the research project no. 17-19-01522.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Maslova.

Additional information

Translated by Sh. Galyaltdinov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maslova, M.V., Ivanenko, V.I., Gerasimova, L.G. et al. Study of the Sorption of Cesium Cations by a Sorbent Based on Titanium Phosphate. Prot Met Phys Chem Surf 55, 833–840 (2019). https://doi.org/10.1134/S2070205119050174

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205119050174

Keywords:

Navigation