Skip to main content
Log in

The Influence of Stabilizer on the Formation and Tribotechnical Properties of Cu Nanoparticles

  • NANOSCALE AND NANOSTRUCTURED MATERIALS AND COATINGS
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

The good wear-resistance of state-of-the-art liquid lubricants is due to the formation of complex metal and organometallic films onto the friction surface, reducing the friction and wear. For this purpose, various additives of metal nanopowders are used, especially ones based on copper. The formation and growth of Cu nanoparticles, as well as the tribotechnical characteristics of lubricants, are mainly affected by the choice of stabilizer, because nanoparticles cannot resist the external conditions without protecting their surface. According to quantum chemical studies, the best stabilizer in the series of gelatin, ammonia, sodium borohydride, and sodium citrate is gelatin due to the very large amount of functional groups in its structure. The characterization of physicochemical properties via dynamic light scattering, atomic force microscopy, and electron microscopy, as well as the tribotechnical characteristics of liquid lubricants with stabilized Cu nanoparticles, are consistent with quantum chemical calculations, confirming that Cu nanoparticles stabilized in gelatin possess the better tribotechnical properties than other stabilizers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Don, J., Sun, T.C., and Rigney, D.A., Wear, 1983, vol. 91, no. 2, pp. 191–199.

    Article  Google Scholar 

  2. Gulzar, M., Masjuki, H.H., Kalam, M.A., et al., J. Nanopart. Res., 2016, vol. 18, p. 223.

    Article  Google Scholar 

  3. Kolodziejczyk, L., Martínez-Martínez, D., Rojas, T.C., et al., J. Nanopart. Res., 2007, vol. 9, p. 639.

    Article  Google Scholar 

  4. Koshy, C.P., Rajendrakumar, P.K., and Thottackkad, M.V., Wear, 2015, vols. 330–331, pp. 288–308.

    Article  Google Scholar 

  5. Arumugam, S. and Sriram, G., Proc. Inst. Mech. Eng., Part J, 2014, vol. 228, pp. 1308–1318.

    Google Scholar 

  6. Alves, S.M., Barros, B.S., Trajano, M.F., Ribeiro, K.S.B., and Moura, E., Tribol. Int., 2013, vol. 65, pp. 28–36.

    Article  Google Scholar 

  7. Ramos, J., Piamba, J.F., Sánchez, H., et al., Hyperfine Interact., 2015, vol. 232, p. 119.

    Article  Google Scholar 

  8. Frishberg, I.V., Zolotukhina, L.V., Kharlamov, V.V., et al., Metalloved. Term. Obrab. Met., 2000, no. 7, pp. 21–23.

  9. Tarasov, S.Y., Belyaev, S.A., and Lerner, M.I., Met. Sci. Heat Treat., 2005, vol. 47, p. 560.

    Article  Google Scholar 

  10. Li, W., Zheng, S., Cao, B., et al., J. Nanopart. Res., 2011, vol. 13, p. 2129.

    Article  Google Scholar 

  11. Alazemi, A.A., et al., Carbon, 2017, vol. 123, pp. 7–17.

    Article  Google Scholar 

  12. Hu, K.H., Huang, F., Hu, X.G., et al., Tribol. Lett., 2011, vol. 43, p. 77.

    Article  Google Scholar 

  13. Jiao, D., Zheng, S., Wang, Y., Guan, R., and Cao, B., Appl. Surf. Sci., 2011, vol. 257, pp. 5720–5725.

    Article  Google Scholar 

  14. Ponomarenko, A.G., Burlov, A.S., Boiko, M.V., Shiryaeva, T.A., Kalmykova, A.G., Zaichenko, S.B., and Milutka, M.S., J. Frict. Wear, 2015, vol. 36, no. 1, pp. 15–22.

    Article  Google Scholar 

  15. Frisch, M.J., Trucks, G.W., Schlegel, H.B., et al., Gaussian, Wallingford, CT: Gaussian Inc., 2013.

    Google Scholar 

  16. Kuzharov, A.A., Milov, A.A., Gerasina, U.S., Nguyen, H., Tishchenko, A.V., Lomachenko, K.A., and Soldatov, A.V., Nanotechnol. Russ., 2016, vol. 11, nos. 9–10, pp. 593–602.

    Article  Google Scholar 

  17. Kuzharov, A.A., Luk’yanov, B.S., and Kuzharov, A.S., J. Frict. Wear, 2016, vol. 37, no. 4, pp. 337–345.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Kuzharov.

Additional information

Translated by O. Maslova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuzharov, A.A., Milov, A.A., Gerasina, Y.S. et al. The Influence of Stabilizer on the Formation and Tribotechnical Properties of Cu Nanoparticles. Prot Met Phys Chem Surf 55, 283–287 (2019). https://doi.org/10.1134/S2070205119020151

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205119020151

Keywords:

Navigation