Skip to main content
Log in

On the Al5083–Al2O3–TiO2 Hybrid Surface Nanocomposite Produced by Friction Stir Processing

  • Nanoscale and Nanostructured Materials and Coatings
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

In this study Al5083–Al2O3–TiO2 hybrid surface nanocomposite was successfully prepared by friction stir processing (FSP). The effects of different combination of rotational and travel speed of tool were investigated. The samples were characterized by optical and scanning electron microscopy (SEM), microhardness and undergone tensile and wear tests. Based on the maximum tensile strength and hardness value, optimum rotational speed of 710 rpm and travel speed of 20 mm/min was achieved. The microhardness and tensile strength of the as-received alloy and specimens having optimum surface nanocomposite were about 80 Hv, 285 MPa, 140 Hv and 375 MPa, respectively. Surface nanocomposites showed significantly lower friction coefficients and wear rates than those obtained for substrate. Based on scanning electron microscopy tests, abrasive wear as dominant wear mechanism was detected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kok, M., J. Mater. Process. Technol., 2005, vol. 161, p. 381.

    Article  Google Scholar 

  2. Sahin, Y., Kok, M., and Celik, H., J. Mater. Process. Technol., 2002, vol. 128, p. 280.

    Article  Google Scholar 

  3. Iwai, Y., Honda, T., Miyajima, T., et al., Compos. Sci. Technol., 2000, vol. 60, p. 1781.

    Article  Google Scholar 

  4. Kiourtsidis, G.E. and Skolianos, S.M., Wear, 2002, vol. 253, p. 946.

    Article  Google Scholar 

  5. Mishra, R., Ma, Z.Y., and Charit, I., Mater. Sci. Eng., A, 2003, vol. 341, p. 307.

    Article  Google Scholar 

  6. Cavaliere, P., Composites, Part A, 2005, vol. 36, p. 1657.

    Article  Google Scholar 

  7. Mishra, R.S. and Ma, Z.Y., Mater. Sci. Eng., R, 2005, vol. 50, p. 1.

    Article  Google Scholar 

  8. Mahmoud, E.R.I., Takahashi, M., Shibayanagi, T., and Ikeuchi, K., Wear, 2010, vol. 268, p. 1111.

    Article  Google Scholar 

  9. Lee, C.J., Huang, J.C., and Hsieh, P.J., Scr. Mater., 2006, vol. 54, p. 1415.

    Article  Google Scholar 

  10. Arora, H.S., Singh, H., and Dhindaw, B.K., Int. J. Adv. Manuf. Technol., 2012, vol. 61, p. 1043.

    Article  Google Scholar 

  11. Nascimento, F., Santos, T., Vilaca, P., et al., Mater. Sci. Eng., A, 2009, vol. 506, p. 16.

    Article  Google Scholar 

  12. Wang, Y. and Mishra, R.S., Mater. Sci. Eng., A, 2007, vol. 463, p. 245.

    Article  Google Scholar 

  13. Darras, B.M., Khraisheh, M.K., Abu-Farha, F.K., and Omar, M.A., J. Mater. Process. Technol., 2007, vol. 191, p. 77.

    Article  Google Scholar 

  14. Sua, J.Q., Nelson, T.W., and Sterling, C.J., Mater. Sci. Eng., A, 2005, vol. 405, p. 277.

    Article  Google Scholar 

  15. Ma, Z.Y., Mishra, R.S., and Mahoney, M.W., Acta Mater., 2002, vol. 50, p. 4419.

    Article  Google Scholar 

  16. Hassan, K.A.A., Norman, A.F., Price, D.A., and Prangnell, P.B., Acta Mater., 2003, vol. 51, p. 1923.

    Article  Google Scholar 

  17. McNelley, T.R., Swaminathan, S., and Su, J.Q., Scr. Mater., 2008, vol. 58, p. 349.

    Article  Google Scholar 

  18. Kumar, S., Arch. Civ. Mech. Eng., 2016, vol. 16, no. 3, p. 473.

    Article  Google Scholar 

  19. Khodabakhshi, F., Simchi, A., Kokabi, A.H., et al., Mater. Sci. Eng., A, 2014, vol. 605, p. 108.

    Article  Google Scholar 

  20. Ma, Z.Y., Sharma, S.R., Mishra, R.S., and Manohey, M.W., Mater. Sci. Forum, 2003, vols. 426–432, p. 2891.

    Article  Google Scholar 

  21. Hu, C.M., Lai, C.M., Du, X.H., et al., Scr. Mater., 2008, vol. 59, p. 1163.

    Article  Google Scholar 

  22. Liu, Q., Ke, L., Liu, F., Huang, C., and Xing, L., Mater. Des., 2013, vol. 45, p. 343.

    Article  Google Scholar 

  23. Liu, Z.Y., Xiao, B.L., Wang, W.G., and Ma, Z.Y., Mater. Sci. Technol., 2014, vol. 30, no. 7, p. 649.

    Article  Google Scholar 

  24. Patel, V.V., Badheka, V., and Kumar, A., Metallogr., Microstruct., Anal., 2016, vol. 5, no. 4, p. 278.

    Article  Google Scholar 

  25. Soleymani, S., Abdollah-zadeh, A., and Alidokht, S.A., Wear, 2012, vols. 278–279, p. 41.

    Article  Google Scholar 

  26. Shafiei-Zarghani, A., Kashani-Bozorg, S.F., and Zarei-Hanzaki, A., Wear, 2011, vol. 270, p. 403.

    Article  Google Scholar 

  27. Shahi, A., Heydarzadeh Sohi, M., Ahmadkhaniha, D., and Ghambari, M., Int. J. Adv. Manuf. Technol., 2014, vol. 75, p. 1331.

    Article  Google Scholar 

  28. Faraji, G., Dastani, O., and Akbari Mousavi, S.A., J. Mater. Eng. Perform., 2011, vol. 20, p. 1583.

    Article  Google Scholar 

  29. Ahmadifard, S., Kazemi, Sh., and Heidarpour, A., J. Mater.: Des. Appl. doi: 10.1177/1464420715623977

  30. Li, Y., Murr, L.E., and McClure, J.C., Mater. Sci. Eng., A, 1999, vol. 271, p. 213.

    Article  Google Scholar 

  31. Murr, L.E., Mater. Res. Innovations, 1998, vol. 2, p. 150.

    Article  Google Scholar 

  32. Kwon, Y.J., Shigematsu, I., and Saito, Y., Scr. Mater., 2003, vol. 49, p. 785.

    Article  Google Scholar 

  33. Humphreys, F.J. and Hatherly, M., Recrystallization and Related Annealing Phenomena, Oxford: Elsevier, 2004.

    Google Scholar 

  34. Feng, A.H. and Ma, Z.Y., Acta Mater., 2009, vol. 57, p. 4248.

    Article  Google Scholar 

  35. Humphreys, F.J., Prangnell, P.B., and Priestner, R., Curr. Opin. Solid State Mater. Sci., 2001, vol. 5, p. 15.

    Article  Google Scholar 

  36. Yadav, D. and Bauri, R., Mater. Sci. Eng., A, 2011, vol. 528, p. 1326.

    Article  Google Scholar 

  37. Shahraki, S., Khorasani, S., Abdibehnagh, R., et al., Metall. Mater. Trans. B, 2013, vol. 44, p. 1546.

    Article  Google Scholar 

  38. Yuvaraj, N. and Aravindan, S., J. Mater. Res. Technol., 2015, vol. 154, p. 13.

    Google Scholar 

  39. Kumar, S., Sarma, V.S., and Murty, B.S., Mater. Sci. Eng., A, 2007, vol. 465, p. 160.

    Article  Google Scholar 

  40. Zahmatkesh, B. and Enayati, M.H., Mater. Sci. Eng., A, 2010, vol. 527, p. 6734.

    Article  Google Scholar 

  41. Sarmadi, H., Kokabi, A.H., and Seyed Reihani, S.M., Wear, 2013, vol. 304, p. 1.

    Article  Google Scholar 

  42. Shafei-Zarghani, Z.A., Kashani-Bozorg, S.F., and Zarei-Hanzaki, A., Mater. Sci. Eng., A, 2009, vol. 500, p. 84.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Heidarpour.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heidarpour, A., Ahmadifard, S. & Kazemi, S. On the Al5083–Al2O3–TiO2 Hybrid Surface Nanocomposite Produced by Friction Stir Processing. Prot Met Phys Chem Surf 54, 409–415 (2018). https://doi.org/10.1134/S2070205118030279

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205118030279

Keywords

Navigation