Skip to main content
Log in

Production of Annealed Cold-Sprayed 316L Stainless Steel Coatings for Biomedical Applications and Their in-vitro Corrosion Response

  • Physicochemical Problems of Materials Protection
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

316L powders were successfully deposited onto Al5052 aluminium substrates by cold spray method. Annealing was treated on the coated samples at 250–1000°C temperatures under Ar atmosphere. The in vitro performances of the coatings have been compared with using electrochemical corrosion test technique in the simulated body fluid (SBF) at body temperature (37°C). A scanning electron microscope (SEM-EDS) and X-ray diffraction (XRD) have been used for microstructural characterization and phases identifications of the coatings, respectively. The results were shown that there are high adhesions at particle and substrate interfaces and between the particles deposited as well. Also, the increasing annealing temperature increases corrosion resistance of the cold sprayed 316L stainless steel coatings. The corrosion susceptibility of the coating annealed at 1000°C was similar that of standard 316L stainless steel implant material in Ringer’s solution. The microstructural observations revealed that corrosion starts between the inter-splat powders and continues throughout the surface not in-depth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chew, K.K., Zein, S.H.S., and Ahmad, A.L., Nat. Sci. 2012, vol. 04, p. 184.

    Google Scholar 

  2. Kamachimudali, U., Sridhar, T.M., and Raj, B., Sadhana 2003, vol. 28, p. 601.

    Article  Google Scholar 

  3. Dikici, B., Esen, Z., Duygulu, O., and Gungor, S., in Advances in Metallic Biomaterials: Tissues, Materials and Biological Reactions, Mitsuo, N., Ed., Berlin: Springer 2015, p. 275.

    Google Scholar 

  4. Niinomi, M., Mater. Sci. Eng., A 1998, vol. 243, p. 231.

    Article  Google Scholar 

  5. Agrawal, C.M., JOM, 1998, vol. 50, p. 31.

    Article  Google Scholar 

  6. Aksakal, B., Gavgali, M., and Dikici, B., J. Mater. Eng. Perform., 2010, vol. 19, p. 894.

    Article  Google Scholar 

  7. Perl, D.P., Environ. Health Perspect. 1985, vol. 63, p. 149.

    Article  Google Scholar 

  8. Kim, H. and Knowles, J.C., J. Am. Ceram. Soc., 2005, vol. 88, p. 154.

    Article  Google Scholar 

  9. Sonmez, S., Aksakal, B., and Dikici, B., J. Sol-Gel Sci. Technol., 2012, vol. 63, p. 510.

    Article  Google Scholar 

  10. Lee, I.S., Kim, H.E., and Kim, S.Y., Surf. Coat. Technol. 2000, vol. 131, p. 181.

    Article  Google Scholar 

  11. Karlsson, M., PhD Thesis, Uppsala: Univ. Uppsala, 2004.

    Google Scholar 

  12. Shackelford, E.J.F. and Alexander, W., in Materials Science and Engineering Handbook, Shackelford, E.J.F., Ed., Boca Raton: CRC Press 2001, p. 396.

    Google Scholar 

  13. Park, J., Bioceramics: Properties, Characterizations and Applications, Iowa City, IA: Springer Science+Business Media 2008, p. 5

    Google Scholar 

  14. Spencer, K. and Zhang, M., Surf. Coat. Technol. 2011, vol. 205, p. 5135.

    Article  Google Scholar 

  15. Kwok, C.T., Wong, P.K., Cheng, F.T., and Man, H.C., Appl. Surf. Sci. 2009, vol. 255, p. 6736.

    Article  Google Scholar 

  16. Li, W.Y.Y., Zhang, C., Liao, H., and Coddet, C., J. Coat. Technol. Res., 2009, vol. 6, p. 401.

    Article  Google Scholar 

  17. Wu, G., Zeng, X., Li, G., Yao, S., and Wang, X., Mater. Lett. 2006, vol. 60, p. 674.

    Article  Google Scholar 

  18. AL-Mangour, B., Dallala, R., Zhim, F., et al., Mater. Lett. 2013, vol. 91, p. 352.

    Article  Google Scholar 

  19. Sova, A., Grigoriev, S., Okunkova, A., and Smurov, I., Surf. Coat. Technol. 2013, vol. 235, p. 283.

    Article  Google Scholar 

  20. Williams, D., J. Bone Jt. Surg., 1993, vol. 76, p. 348.

    Google Scholar 

  21. AL-Mangour, B., Mongrain, R., Irissou, E., and Yue, S., Surf. Coat. Technol. 2013, vol. 216, p. 297.

    Article  Google Scholar 

  22. Dikici, B., Yilmazer, H., Ozdemir, I., and Isik, M., J. Therm. Spray Technol., 2016, vol. 25, p. 704.

    Article  Google Scholar 

  23. Sundararajan, G., Phani, P., Jyothirmayi, A., and Gundakaram, R., J. Mater. Sci., 2009, vol. 44, p. 2320.

    Article  Google Scholar 

  24. Tait, W.S., Prog. Org. Coat. 1995, vol. 26, p. 73.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Burak Dikici.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dikici, B., Topuz, M. Production of Annealed Cold-Sprayed 316L Stainless Steel Coatings for Biomedical Applications and Their in-vitro Corrosion Response. Prot Met Phys Chem Surf 54, 333–339 (2018). https://doi.org/10.1134/S2070205118020168

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205118020168

Keywords

Navigation